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Problem formulation

Given a set of locations V with travel distances between them.
Locations are numbered with numbers from 1 to n = |V |.
Location with label 1 is depot.
All other locations are identified with customers which can be
divided into two groups

Pickup customers or producers
Delivery customers or consumers.

It is known a quantity of commodity produced/requested by each
of customers;
A vehicle with given capacity starts and finish at depot and must
visit each customers exactly once;
1-PDTSP consists of finding a minimum length tour for the
vehicle which satisfies all customers.
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Previous work

Problem proposed by Hernández–Pérez and Salazar–Gonzáles
There are a number of proposed methods for solving 1-PDTSP

Hernández–Pérez, Rodríguez–Martín and Salazar–Gonzáles
proposed method based on GRASP and VND.
Zhao et al. proposed method method based on Genetic algorithm
Hernández–Pérez and Salazar–Gonzáles proposed exact method
based on Branch and Bound able to solve instances with up to
n = 60 locations.
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Notation

qi denotes quantity of commodity produced/demaned by
customer at location i ;
If qi > 0 then customer i is pickup customer, otherwise it is
delivery customer;
Depot can be considered as customer with demand

q1 = −
n∑

k=2

qk
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Hamiltonian tours can be divided into feasible and non-feasible
Let x = x1, x2, ..., xn is Hamiltonian tour (x1 = 1);
We define load of vehicle after visiting customer xi in the
following way

L1(x) = qx1 , Li (x) = Li−1 + qxi

Tour x is feasible if and only if

max
i∈{1,2,...,n}

Li − min
i∈{1,2,...,n}

Li 6 Q

Tour x is infeasible if and only if

max
i∈{1,2,...,n}

Li − min
i∈{1,2,...,n}

Li > Q

Value
max

i∈{1,2,...,n}
Li − min

i∈{1,2,...,n}
Li −Q,

we call the measure of infeasibility.
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GVNS

GVNS(x , `max , kmax , tmax )

1 repeat
2 k ← 1
3 repeat
4 x ′ ← Shake(x , k)
5 x ′′ ← VND(x ′, `max )
6 NeighborhoodChange(x , x ′′, k , kmax )
7 until k > kmax
8 t ← CPUTime()
9 until t > tmax
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Sequential VND

The final solution of Seq-VND should be a local minimum with
respect to all `max neighborhoods.
The chances to reach a global minimum are larger than with a
single neighborhood structure.
The total size of Seq-VND is equal to the union of all
neighborhoods used.
If neighborhoods are disjoint (no common element in any two)
then the following holds

|NSeq−VND(x)| =

`max∑
`=1

|N`(x)|, x ∈ X .
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Nested VND

Assume that we define two neighborhood structures (`max = 2).
In the nested VND we in fact perform local search with respect to
the first neighborhood in any point of the second.
The cardinality of neighborhood obtained with the nested VND is
product of cardinalities of neighborhoods included, i.e.,

|NNest−VND(x)| =

`max∏
`=1

|N`(x)|, x ∈ X .

The pure Nest-VND neighborhood is much larger than the
sequential one.
The number of local minima w.r.t. Nest-VND will be much
smaller than the number of local minima w.r.t. Seq-VND.
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Mixed nested VND

After exploring b (a parameter) neighborhoods, we switch from a
nested to a sequential strategy.
We can interrupt nesting at some level b (1 ≤ b ≤ `max ) and
continue with the list of the remaining neighborhoods in
sequential manner.
If b = 1, we get Seq-VND. If b = `max we get Nest-VND.
Since nested VND intensifies the search in a deterministic way,
boost parameter b may be seen as a balance between
intensification and diversification in deterministic local search
with several neighborhoods.
Its cardinality is clearly

|NMix−VND(x)| =

`max∑
`=b

|N`(x)|+
b−1∏
`=1

|N`(x)|, x ∈ X .
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2-opt

Change of tour length is

df = d(xi , xj )+d(xi+1, xj+1)−d(xi , xi+1)−d(xj , xj+1)

Set of candidate pairs can be reduced to
pairs (i , j) satisfying

d(xi , xj ) < d(xi , xi+1) or d(xi+1, xj+1) < d(xi , xi+1)

or

d(xi , xj ) < d(xj , xj+1) or d(xi+1, xj+1) < d(xj , xj+1)

Mladenović N 10/37 Variable neighborhood search for the TSP and its variants
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3-opt

Checking of new solution

df = d(xi , xj+1) + d(xk , xi+1) + d(xj , xk+1)−
(d(xi , xi+1) + d(xj , xj+1) + d(xk , xk+1))

We also reduce the set of candidate moves

d(xi , xj+1) < d(xi , xi+1)

and

d(xi , xj+1)+d(xj , xk+1) < d(xi , xi+1)+d(xj , xj+1)

Mladenović N 11/37 Variable neighborhood search for the TSP and its variants
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Special cases

If index j in 3-opt is set to i + 1, we get 2.5-opt:

If index j in 2-opt is set to i + 2, we get 1-opt:
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1-PDTSP

In 1-PDTSP, beside the length of the tour, we should check its
feasibility;
For example, in the solution x ′ that belongs to 2–opt
neighborhood of x , the links (i , i + 1) and (j , j + 1) are deleted
and capacity of the vehicle is changed following the reverse order
(from j to i + 1);
We need to calculate capacities after each visit and then find
their minimum and maximum.
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2-opt Feasibility checking

Let us denote with L loads for initial tour and
with L′ loads after 2-opt move
New load after visiting location xk (any location
between xi+1 and xj ) is

L′(xk ) = Li + qxj + qxj−1 + · · ·+ qxk

= qx1 + · · ·+ qxj − (qx1 + · · ·+ qxk−1 )+

(qx1 + · · ·+ qxi ) = Lj + Li − Lk−1

For all other locations new load is same as
previous load

Because of that we have:
max{L′1, L′2, ..., L′n} = max{max{L1, ..., Li}, max{Lj+1, ..., Ln},

Lj + Li −min{Li , ..., Lj−1}}
Mladenović N 14/37 Variable neighborhood search for the TSP and its variants
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Application of advanced data structure

In order to speedup calculating minimum and/or maximum, we
use structure Binary Indexed Tree, BIT;
This is structure providing efficiently computing minimum
(maximum) of subsequence of any sequence whose elements
may be changed during computation;
This structure provides two type of operations on such array

Changing value of any element of a sequence;
Finding minimum (or maximum) of subsequence consisting of
adjacent element of a sequence (query).
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Binary Indexed Trees (BIT)

BIT is efficient data structure introduced by Fenwick (1994) for
maintaining cumulative frequencies
In our case it is used for efficient calculating local minima or local
maxima of subsequence of a sequence whose elements change
their values during computation
(Almost) complete binary tree
Leafs of the tree contain values of array;
Each non-leaf vertex u contains minimum (maximum) of values
stored in leafs of subtree rooted in u
It is easy to conclude that height of tree is dlog2 ne (n is sequence
cardinality).

Mladenović N 16/37 Variable neighborhood search for the TSP and its variants



mi-logo

Introduction
Variable neighborhood descent

Neighborhoods for Classical TSP
Binary Indexed Tree - BIT

GVNS for 1-PDTSP
Results

Conclusions

Description
Application

BIT - Finding minimum (maximum) of subsequence

We find maximum of sub-sequence containing light gray
elements;
Instead of comparing each of these elements with current
maximum we compare only values stored in dark gray nodes
There are at most two dark colored nodes at each level of the
tree (depending of subsequence)
So, complexity of calculating maximum of subsequence with k
elements is Θ(log k) = Θ(log n).

Mladenović N 17/37 Variable neighborhood search for the TSP and its variants
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BIT - Find maximum, second example
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Updating tree after setting value of any element
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Updating tree after setting value of any element

Change the value of the element ai of an array a can influence
the change in value stored only in nodes which are roots of
subtrees containing leaf storing element ai

In the previous example leaf containing value 4 change value,
and new value is 11 (dark gray colored leaf)
Nodes containing this leaf are on path from this leaf to root of BIT
(other gray colored nodes)
There are dlog ne nodes on the path and because of that
complexity of updating is Θ(log n)
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Using BIT in 2-opt for PDTSP

For the current solution x we calculate loads of vehicle and
create BIT with loads stored in leafs;
For each 2-opt move (i , j) (i < j) we perform the following steps

Check length of the tour after this move
Check its feasibility by calculating maximal and minimal load
Maximal load is calculated in the following way

max(max{L1, ..., Li , max{Lj+1, ..., Ln}, Lj +Li−min{Li , Li+1, ..., Lj−1})

Minimal load is found in similar way

min(min{L1, ..., Li}, min{Lj+1, ..., Ln}, Lj +Li−max{Li , Li+1, ..., Lj−1})

Mladenović N 21/37 Variable neighborhood search for the TSP and its variants
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Properties of BIT for solving PD-TSP

Proposition

Updating the binary index tree after setting the element Li to the new
value is executed in O(log n).

Proposition

Calculating the maximum value in interval [Li , Lj ], j > i is in O(log n)
time with BIT structure.

Proposition

Checking the feasibility of the 2-opt move for 1-PDTSP with BIT
structure is in O(log n).
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Illustrative example
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Initial solution
Local Search
Shaking

Initial solution

Choose the first customer x2 at random;
Choose xi+1 among c = 20 closest customers of xi ;
Consider only feasible sub-tours;
Among c closest customers, search for those who could be
feasibly added at the end of the tour T but not yet visited; select
the customer with the largest demand;
If such a customer does not exist, we search for all customers
who have not appeared in the sub-tour T ;
Let S be the set of customers who can be feasibly added to the
sub-tour;

Select the nearest customer from S with a probability of 0.9, or
select a random customer from S with a probability of 0.1

If there is no customer that can be added (S = ∅), we add a
random customer and continue.

Mladenović N 24/37 Variable neighborhood search for the TSP and its variants
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Local search for 1-PDTSP

Local search is Seq VND thorough the following neighborhoods
1 1-opt
2 2-opt
3 Forward and backward insertion

Mladenović N 25/37 Variable neighborhood search for the TSP and its variants
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Shaking

The simplest variant for shaking is to perform sequence of k
moves (1–opt, 2–opt or insertion)
But in that case we often do not get feasible solution
We decide to make ’smart’ moves in order to produce feasible
solution after perturbation.

Mladenović N 26/37 Variable neighborhood search for the TSP and its variants
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Maintaining feasibility of 3–opt

If we select indices i1, i3 i i5 such that
Li1 = Li3 = Li5 and perform modification as
presented on figure we obtain feasible tour
(if previous tout is feasible)
We can prove that vehicle loads after
visiting customers xi2 , xi4 and xi6 are
unchanged
For example

L′(xi4 ) = qx1 + qx2 + · · ·+ qxi1
+ qxi4

=

= L(xi1 ) + qxi4
= L(xi3 ) + qxi4

= L(xi4 )

Mladenović N 27/37 Variable neighborhood search for the TSP and its variants
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Maintaining feasibility of double–bridge move

Indices i1, i3, i5 and i7 are selected such that
loads after visiting corresponding customers
are same.
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Comparison of local search (neighborhoods)
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n Q Local search Min. % dev Max. % dev Avg. % dev Av time
200 10 Forward-insertion 95.650 255.517 181.195 0.088

Backward-insertion 94.753 252.827 186.318 0.081
2–opt 13.882 242.910 32.433 0.138
Seq–VND–2 12.275 242.910 27.808 0.163
Seq–VND–3 8.991 242.910 24.309 0.478
Mix–VND 1.269 242.910 12.958 2.989

400 10 Forward-insertion 78.320 218.770 165.603 0.385
Backward-insertion 81.881 218.770 169.416 0.317
2–opt 12.078 217.104 21.852 0.831
Seq–VND–2 10.684 217.104 18.954 0.769
Seq–VND–3 8.951 203.738 16.035 4.062
Mix–VND 1.492 217.104 6.573 26.569

Table: Comparison of local search
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Comparison of shaking

Parameters VNS (Fine shaking) VNS (Classical shaking)

n Q Best Avg. Time Best Avg. Time

200 10 18699.1 18989.62 49.74 19658.3 24353.16 103.98
200 20 13385.1 13627.38 37.60 13879.1 14347.13 87.17
200 40 11223.8 11323.93 18.00 11279.4 11422.59 73.47

400 10 25545.1 25962.14 165.95 28176.1 34302.72 230.58
400 20 18518.9 18786.59 69.41 20128.5 20943.97 129.57
400 40 15680.0 15803.19 48.67 16101.8 16332.48 146.67

Mladenović N 32/37 Variable neighborhood search for the TSP and its variants
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VND without and with 3-opt

Parameters GVNS (with VND-2) GVNS (with VND-3)

n Q Best Avg. Time Best Avg. Time

200 10 18699.1 18989.62 49.74 18709.1 19000.88 51.70
200 20 13385.1 13627.38 37.60 13391.4 13637.40 40.10
200 40 11223.8 11323.93 18.00 11236.4 11338.02 19.73

400 10 25545.1 25962.14 165.95 25555.6 25974.50 167.58
400 20 18518.9 18786.59 69.41 18530.7 18801.92 71.05
400 40 15680.0 15803.19 48.67 15687.2 15821.80 50.62

Table: Comparison of GVNS with VND-2 and VND-3 as local searches
respectively
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Seq-VND or Mix-VND

Parameters VNS with Seq-VND VNS with Mix-VND

n Q Best Average Time Best Average Time

200 10 18699.1 18989.62 49.74 18578.8 18774.22 75.69
200 20 13385.1 13627.38 37.60 13319 13439.86 67.58
200 40 11223.8 11323.93 18.00 11214.8 11249.22 42.32

400 10 25545.1 25962.14 165.95 25467.2 25752.63 165.44
400 20 18518.9 18786.59 69.41 18407 18647.13 152.36
400 40 15680.0 15803.19 48.67 15602.9 15711.91 144.29

Table: Comparison of Seq-VND and Mix-VND
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Parameters Best VNS 1 VNS 2 GRASP VND GA CPU time

n Q known Best Avg. Best Avg. Best Avg. Best Avg. VNS 1 VNS 2 GRASP GA

100 10 12718.60 0.29 1.52 0.0 0.35 1.88 4.62 0.96 1.85 9.96 23.79 8.85
100 20 9357.60 0.02 0.96 0.00 0.18 0.65 2.55 5.89 14.95 2.22
100 40 8165.40 0.00 0.20 0.00 0.04 0.00 0.57 1.84 5.97 0.69
200 10 18578.80 0.65 2.21 0.00 1.05 4.81 7.50 2.70 4.09 49.74 75.69 41.77
200 20 13319.00 0.50 2.32 0.00 0.91 4.58 6.86 37.60 67.58 17.37
200 40 11214.80 0.08 0.97 0.00 0.31 1.34 3.18 18.00 42.32 4.35
300 10 22935.30 0.83 2.39 0.00 1.47 5.30 7.67 4.20 5.62 104.61 122.83 117.86
300 20 16313.40 0.88 2.60 0.00 1.43 6.60 8.62 38.74 115.93 50.90
300 40 13671.40 0.41 1.40 0.00 0.56 2.85 4.80 24.91 88.63 12.89
400 10 25467.20 0.31 1.94 0.00 1.12 5.66 7.68 4.02 5.82 165.95 165.44 220.40
400 20 18407.00 0.61 2.06 0.00 1.30 6.49 8.61 69.41 152.36 91.73
400 40 15602.90 0.49 1.28 0.00 0.70 3.41 5.20 48.67 144.29 23.92
500 10 28774.20 0.00 1.54 0.10 1.28 5.80 7.76 5.57 7.37 124.14 209.76 391.01
500 20 20927.00 0.17 1.70 0.00 1.38 6.53 8.43 107.01 194.76 164.77
500 40 17495.50 0.41 1.50 0.00 0.86 4.47 6.10 89.81 193.52 43.98

1000 10 44744.20 0.96 19.74 0.00 1.52 349.59 393.22
1000 20 31661.10 1.64 3.57 0.00 1.56 7.69 8.95 478.08 441.03 618.33
1000 40 25450.00 1.20 2.66 0.00 1.28 6.64 8.14 474.72 430.16 440.00

Table: Results on large instances
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Conclusions and future work

We suggest GVNS for solving 1-PD-TSP which contains two
NP-hard problems: find minimum TSP tour and find feasible tour;
Classical k -opt neighborhoods are adapted;
Binary index tree data structure used for efficient feasibility
checking of 2-opt move;
Both Sequential and mixed nested VND are used within GVNS;
All best known solution improved on large benchmark
instances (with up to 500 customers);
We are applying similar approach for solving Travelling
deliveryman problem (with and without profit);
We are also working on PD-VRP.
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Thank you for your attention
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