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At a glance
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Which graph has most symmetries?
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How does a weighted graph look?

Like this?
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How does a weighted graph look?

Like this?
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Drawing a graph

Given a simple weighted undirected

graph G = (V,E) with a distance

function d : E → R+, solve the

constraint system:

∀{u, v} ∈ E ‖xu − xv‖ = duv (1)

Obtain an embedding x : V → R
2
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The number of embeddings

Certain graphs have uncountably many (incongruent)
embeddings
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The number of embeddings

Certain graphs have uncountably many (incongruent)
embeddings

Others have finitely many
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The number of embeddings

Certain graphs have uncountably many (incongruent)
embeddings

Others have finitely many

Cliques, for example, have at most one
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The number of embeddings

Certain graphs have uncountably many (incongruent)
embeddings

Others have finitely many

Cliques, for example, have at most one

1
2

3
4

1
2

3
4

4’
1

2

3
4

Focus on discrete cases: get a combinatorial constraint

problem with decision variables in continuous space
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Vertex orders and embeddings

Assume G has an embedding

If ∃ an order < on V such that:
1. an embedding is known for the first K + 1 vertices
2. the v-th vertex is adjacent to at least K + 1

predecessors

Then xv is the unique intersection of spheres S(xu, duv)
for u adjacent predecessor of v
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u3
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An interesting graph class

So, if every (K + 1)-tuple of consecutive vertices is a
clique in G, we can find an embedding in polynomial
time

(Computing a K + 1 sphere intersection in RK amounts to solving

a square linear system)

Consider graphs with a weaker condition
every K-tuple of consecutive vertices is a clique in G

This is called the DISCRETIZABLE MOLECULAR DISTANCE

GEOMETRY PROBLEM (DMDGP)
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Instance with K = 3 BALCOR11 – p. 7



Proteins
Proteins are organized into a backbone and some side

chains

Once the backbone is placed in R3, placing the side
chains is known as the SIDE CHAIN PLACEMENT PROBLEM

(SCPP) [Santana et al. ’08, Kim ’11]

The backbone is a total order < on a set V of atoms
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Protein distances

Covalent bond distances dv−1,v are known H H

Angles between covalent bonds are known H H

O

⇒ dv−2,v is known for all v > 3 H H

O

Distances dv−3,v are always < 6Å, so they can be measured using
NMR techniques
We assume these distances are exact: this is false in practice, but we can

find orders for which this assumption holds (see later if I have time)

NMR might give other distances too

Atoms may be distant order-wise but

closer than 6Å in space
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Sphere intersection

Situation:

xv−3, xv−2, xv−1 are known

dv,v−1, dv,v−2, dv,v−3 are known

and we’re trying to find xv

Then xv ∈
⋂

i∈{1,2,3}

S(xv−i, dv−i,v), the intersection of 3

spheres in R3, which in general contains 2 points
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When does it fail?

The intersection of 3 spheres in R3 might fail to have exactly

two points:

it has zero points if the spheres do not intersect (but
then the graph fails to have an embedding)

it has uncountably many points (or a single one) if
dv−3,v−1 = dv−3,v−2 + dv−2,v−1

v − 3

v − 2

v − 1

v

v

Since the set of “flat triangles” over v− 3, v− 2, v− 1 has
Lebesgue measure 0 in the set of all triangles, this
event has probability 0
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The Branch-and-Prune algorithm

v: rank of current atom x<v: partial embedding to rank v − 1

G: instance X: current pool of embeddings
S(y, r): RK sphere centered at y with radius r

BRANCHANDPRUNE(v, x<v, G, X):

Let S ←
⋂

i∈{1,...,K}

S(xv−i, dv−i,v) = {s1, . . . , sq}, where q ∈ {0, 2}

for s ∈ S do

Extend the current embedding to x = (x<v, s)

if ∀u ∈ AdjPred(v) ‖xu − xv‖ = duv then

if (v = n) then
Let X ← X ∪ {x}

else

BRANCHANDPRUNE(v + 1, x, G, X)
end if

end if

end for
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BP properties

The DMDGP is NP-hard [Lavor et al., COAP, to appear]

The BP has worst-case exponential time

With probability 1, it finds all incongruent embeddings of
G extending the initial partial embedding known for
x1, . . . , xK

In practice, it performs very efficiently with respect to
speed and accuracy

Can embed 10,000 vertices in a 13 seconds of CPU
time

Two empirical observations:

1. the number of solutions it finds is always a power of two

2. |V | versus CPU time plots are always linear-like for PDB
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Symmetry
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BP root node symmetry

[Lavor et al. COAP, to appear]

Once the first 3 atoms
are placed, the fourth
can generally be placed
in two positions x4, x

′
4

Thm.

x′4 is a reflection of x4
w.r.t. the plane defined
by x1, x2, x3

The BP tree is symmet-
ric below level 3, so it suf-
fices to just consider half
of the BP tree e1

e2

e3

x1

x2

x3

x4

x′
4
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Number of solutions

Instance |X|

mmorewu-2 2
mmorewu-3 2
mmorewu-4 4
mmorewu-5 4
mmorewu-6 4

lavor10 0 4
lavor15 0 16
lavor20 0 8
lavor25 0 8
lavor30 0 2
lavor35 0 64
lavor40 0 2
lavor45 0 2
lavor50 0 4096
lavor55 0 64
lavor60 0 64

Instance |X|

1brv 1
1aqr 2
2erl 1
1crn 1
1ahl 8
1ptq 1
1brz 2
1hoe 1
1lfb 1
1pht 1
1jk2 1
1f39a 1
1acz 4
1poa 1
1fs3 1
1mbn 1
1rgs 1
1m40 1
1bpm 1
1n4w 1
1mqq 1
1rwh 1
3b34 1
2e7z 1
1epw 1

For all tested DMDGP in-
stances, ∃ℓ ∈ N such that
|X| = 2ℓ

←− results only refer to 1
2

of the

tree, multiply by 2 to get |X|
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A BP search tree example
Typical BP search tree (embeddings = paths root→leaves)
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Root node symmetry forces |X| to be even

No evident reason why |X| should be a power of two
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A BP search tree example
Typical BP search tree (embeddings = paths root→leaves)

Root node symmetry forces |X| to be even

No evident reason why |X| should be a power of two
(why not symmetric paths to level |V | from nodes 16 and 45?)
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Discretization/pruning distances

Let ED = {{u, v} | |u− v| ≤ K} and EP = E r ED

ED are the discretization distances

they guarantee that the instance is a DMDGP
they allow the construction of the complete BP tree

this tree has 2|V |−3 leaves, 2|V |−4 if we consider root
node symmetry

EP are the pruning distances

they allow pruning of the BP tree
not at all clear why they should prune branches
symmetrically
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Symmetry by pruning distances

[Liberti et al., LNCS (COCOA), 2011]

Given an embedding x, let Rv
x be the reflection w.r.t. the hyperplane

through xv−K , . . . , xv−1

xv−3

xv−2

xv−1

Thm.

With prob. 1, for all v > K, u < v−K there is a finite set Huv ⊆ R+ with
|Huv| = 2v−u−K s.t.

∀x ∈ X ( ‖xu − xv‖
︸ ︷︷ ︸

plays the role of pruning dist.

∈ Huv)

Furthermore, for x′ ∈ X r {x},

‖xu − xv‖ = ‖x′
u − x′

v‖ iff x′
v = Ru+K

x (xv)
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Reflection symmetry

xu

duv

duv′

xv−3

xv−2

xv−1

xv

x′

v

“Root symmetry” may fail when not at root

xu

duv

duv′

xu+1

xu+2

xv

x′

v

x

gu+3(x)

But then ∃ another symmetry

Reflection “from rank v”: define partial reflections operators

gv(x) = (x1, . . . , xv−1, R
v
x(xv), . . . , R

v
x(xn)) (2)
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Structure of the BP tree (R2)
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Structure of the BP tree (R2)
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Structure of the BP tree (R2)
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Effect of pruning distance d14
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Effect of pruning distance d14
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Effect of pruning distance d25
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Effect of pruning distance d25
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Effect of pruning distance d15
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Effect of pruning distance d15
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Effect of pruning distance d15
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Effect of pruning distance d15
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Groups fixing the trees
Let TD be a full BP binary search tree

Let TP be the subtree of TD representing only feasible branches

Draw them so TP ⊆ TP

Invariant group for TD: all partial reflections (g1, g2, g3)

Invariant group for TP : only some partial reflections (g1)

TD TP

g1g1g2 g3
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Discretization group

Group of partial reflections fixing the
complete BP tree (no pruning distances)

The following hold with probability 1 ∀v > K:
1. gv is injective with probability 1 (by reflection)

2. gv is idempotent (by reflection)

3. ∀u > K, u 6= v, gu and gv commute (nontrivial)

Thus, GD = 〈gv | v > K〉 is an Abelian group under composition

⇒ isomorphic to Cn−K
2 )

By previous thm, discretization distances are invariant under GD
The action of GD on X is transitive,
i.e. ∀x, x′ ∈ X∃g ∈ GD (x′ = g(x))

This action has only one orbit, i.e. X = GDx
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Pruning group

Group of partial reflections fixing the actual
BP tree (with pruning distances)

Assume DMDGP instance is YES, consider {u, v} ∈ EP

With probability 1, duv ∈ Huv (otherwise the instance would be NO)

Notice duv = ‖xv − xu‖ 6= ‖gw(x)v − gw(x)u‖ for all w ∈ {u+K + 1, . . . , v}
u

w v

In order to keep invariance we remove such gw ’s from the group

Pruning group: GP = 〈gw | w > K ∧ ∀{u, v} ∈ EP (w 6∈ {u+K + 1, . . . , v})〉

GP ≤ GD and all distances are invariant w.r.t. the pruning group

Again, action of GP on X is transitive (nontrivial proof)
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Power of two

Thm.

∃ℓ ∈ N (|X| = 2ℓ)

Proof

With probability 1:

GD ∼= Cn−K
2

⇒ |GD| = 2n−K

GP ≤ GD ⇒ |GP | | |GD| ⇒ ∃ℓ ∈ N |GP | = 2ℓ

Action of GP on X is transitive⇒ GPx = X

Idempotency⇒ for g, g′ ∈ GP , if gx = g′x then
g = g′ ⇒ |GPx| = |GP |
Thus, |X| = |GPx| = |GP | = 2ℓ
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Why the “probability 1”?

Not all “YES” DMDGP instances have |X| = 2ℓ

But the set of such instances (with real data) has
Lebesgue measure zero in the set of all DMDGP
instances

x1 = x
(0)
4 x2 = x

(01)
5 = x

(11)
5

x3 x
(1)
4x

(00)
5

x
(10)
5 x1

x2

x3

x
(0)
4 x

(1)
4

x
(00)
5 x

(01)
5 x

(10)
5 x

(11)
5

symmetric

Happens when > 1 vertices are embedded in the same position

x
(01)
5 should be infeasible, but x(01)

5 = x
(11)
5 (event with prob. 0)
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Polynomial cases
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A polynomial BP?

We never noticed any exponential-time increase
behaviour in all our experiments (several scores of
instances generated from PDB files)

We recently embedded a 10000-atom protein backbone
in 13s on one core

It is easy to show that BP has worst-case exponential
complexity

Are a polynomial case of the DMDGP?

Complexity depends on BP nodes; since height≤ |V |,
only need to consider treewidth

A pruning edge {u, v} with u < v −K reduces the
number of nodes at level v from 2v−K to 2v−K−u+1 (by
symmetry)
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BP subtree rooted at u

This row: no pruning
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0 ∨ 1 ∨ 2

1 ∨ 2 ∨ 3 2∨3∨4
0 ∨ . . . ∨ 3

1 ∨ . . . ∨ 4

0 ∨ . . . ∨ 4

BP nodes vs. pruning edges

1st line: v − u

vertices: |BP nodes| at level v (treewidth)

arcs: ∃ pruning edge {u+ arc_label, v}
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Constant treewidth
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BP complexity: O(2v0 |V |)
Sufficient: ∃v0∀v > v0∃u < v − K ({u, v} ∈ EP )

Example: v0 = K + 3
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Constant-bounded treewidth
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BP complexity: O(2v0 |V |)
Sufficient: ∃v0 s.t. every subsequence of s consecutive vertices
> v0 with no incident pruning edge is preceded by a vertex vs

s.t. ∃us < vs (vs − us ≥ |s| ∧ {us, vs} ∈ EP )

“Any path under the constant path”

BALCOR11 – p. 34



Polynomial time BP

We can also allow treewidth growth as long as it’s
logarithmic in n

This yields a polynomial-time BP
. . . well, fixed-parameter tractable w.r.t. v0

We tested all our protein instances: all display either
constant or const-bounded treewidths with very low v0
(i.e. v0 = 4)
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Application to proteomics
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Virtual hydrogen backbone
The most accurate NMR distances are between hydrogen atoms only,
but the actual backbone is a chain of N-Cα-C groups

So find a virtual backbone composed of hydrogens only, and such that
its order satisfies the DMDGP requirements

Certain hydrogens must be enumerated twice [Lavor et al. JOGO]
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Listing atoms twice

If a hydrogen is listed twice, then there are i 6= j ∈ V

indexing the same atom

Thus xi = xj and dij = 0

For all k such that {i, k} ∈ E, we have that {j, k} ∈ E as
djk = dik + 0, and

dij + djk = 0 + djk = dik

so STRICT TRIANGULAR INEQUALITIES do not hold for all atom
triplets

However, it only fails on nonconsecutive triplets
Hence, BP still applies

Also, zero pruning distances help keeping floating point errors under
control
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Re-orders

Defn.

A repetition order (re-order) is a finite sequence on V

Re-orders generalize “counting vertices more than once”

They add more flexibility to exploit certain distances as discretization
distances

Essentially, they provide a tool with which to hand-craft convenient
vertex orders for interesting instance classes

Not immediately
evident how to best
order proteins
Here’s a re-order ap-

plying to all backbones
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Uncertain distances

Typically, NMR provides uncertain distances, modelled
by intervals [dLuv, d

U
uv]

Cannot be used for discretization

dL

dU

Two precise distances and an uncertain one
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The actual situation
We know several distances duv precisely because of
chemical properties

Some distances take values in a finite set Duv

The distribution of precise/discrete/uncertain distances on
the protein backbone does not satisfy the DMDGP
requirements
Re-orders provide a solution: use all precise distances for
discretization, plus a few of the discrete whenever
needed; uncertain distances are used for pruning

Pruning with intervals is easy: if the current point xv is

s.t. ‖xv − xu‖ ∈ [dLuv, d
U
uv] for all u ∈ α(v) accept it,

otherwise prune it

Discrete distances Duv simply give rise to BP nodes at
level v − 1 with potentially 2|Duv| subnodes
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iBP

[Mucherino et al. SEA11]
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Implementations
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Sequential code

Mucherino et al. LNCS 2010

The code is available in open source

Download:
http://www.antoniomucherino.it/en/mdjeep.php

Any doubt, ask the MASTER (Antonio)

BALCOR11 – p. 44
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Parallel code

Seconds of user CPU on Grid5000 (www.grid5000.fr)

CPUs
|V | 1 2 8 64

5000 3.21 1.30 0.54 0.36
7500 4.73 3.15 1.25 0.93
10000 13.38 5.49 2.49 1.57

Embed subgraphs then glue embeddings (rigidity⇒ exact)

BALCOR11 – p. 45
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A selection of current work

Work with biochemists/bioinformaticians at Institut
Pasteur to access and treat real NMR data

Use GPx = X result from symmetry to obtain all
solutions from just one

Extend complexity study to actual problem with
discrete/uncertain distances

Progress on “MDGP ∈ NP?” question
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The end

Survey 1: Liberti, Lavor, Mucherino, Maculan, Molecular

distance geometry methods: from continuous to discrete,
International Transactions in Operational Research,
18:33-51, 2010

Survey 2: Lavor, Liberti, Maculan, Mucherino, Recent
advances on the discretizable molecular distance geometry

problem, European Journal of Operational Research,
invited survey (to appear)
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Appendix
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Continuous formulation

Solving the system

∀{i, j} ∈ E ||xi − xj || = dij , (3)

is numerically challenging
LHS involves

√
arg, floating point ops⇒ arg < 0⇒ error and abort

⇒ square both sides

Usually, cast as a penalty objective to be minimized

min
x

∑

{i,j}∈E

(||xi − xj ||2 − d2ij)
2. (4)

Unconstrained minimization of a polynomial of fourth
degree
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General-purpose methods
sBB (exact) [L. et al. ’06]: OK on small and medium-sized instances
because we know the optimal value of the objective (0), lower bound is

tight at the initial tree levels

VNS (heur) [L. et al. ’05, L. et al. ’06]: good for large(ish) instances

MultiLevel Single Linkage (heur) [Kucherenko et al. ’06]: so-so
sBB VNS MLSL

Atoms Variables OF Value Time OF Value Time OF Value Time

cube8 24 0 0.22 0 1.21 0 13.56

cube27 81 0 30.39 0 34.01 0 300.285

cube64 192 0 2237.73 0 398.875 0 2765.13

lavor5 15 0 0.02 0 0.48 0 0.57

lavor10 30 0 1.12 0 7.06 0 69.71

lavor20 60 0 2.25 0 49.99 0 411.152

lavor30 90 0 488.87 0 352.06 0 1634.09

lavor40 120 - - 0.09 1258.13 0.547 2376.01

lavor50 150 - - 0 673.48 0 3002.88
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MDGP-specific methods
Smoothing-based:

Continuation method (heur) [Moré, Wu ’97]

Double VNS with smoothing (heur) [L. et al. ’09]

DC optimization with smoothing (heur) [An et al. ’03]

Hyperbolic smoothing (heur) [Xavier ’08]

Alternating projections algorithm (heur) [Glunt et al. 90]:
iterative updating of a dissimilarity matrix

Geometric build-up (exact/heur) [Dong, Wu ’03 and ’07]: triangulation

GNOMAD (heur) [Williams et al. ’01]
iterative updating of atomic ordering minimizing error contribution

Monotonic Basin Hopping (heur) [Grosso et al. ’09]
funnel-based population heuristic

Self-organization heuristic (heur) [Xu et al. ’03]
pairwise atomic position modification heuristic

SDP-based formulation [Ye et al. ’09]
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Geometric build-up

[Dong, Wu ’03], [Dong, Wu ’07]
Given U = {1, 2, 3, 4} ⊆ V and a partial embedding x : U → R

3

1. Consider v ∈ V r U s.t. U ⊆ δ(v)

2. Extend x to v by solving a linear system:

‖xv − x1‖2 = d21v

‖xv − x2‖2 = d22v

‖xv − x3‖2 = d23v

‖xv − x4‖2 = d23v

⇒

‖xv‖2 − 2xv · x1 + ‖x1‖2 = d21v (5)

‖xv‖2 − 2xv · x2 + ‖x2‖2 = d21v (6)

‖xv‖2 − 2xv · x3 + ‖x3‖2 = d21v (7)

‖xv‖2 − 2xv · x4 + ‖x4‖2 = d21v (8)

(8)-(5)

(8)-(6)

(8)-(7)

⇒







2(x1 − x4)

2(x2 − x4)

2(x3 − x4)






xv=







(‖x1‖2 − ‖x4‖2)− (d21v − d24v)

(‖x2‖2 − ‖x4‖2)− (d22v − d24v)

(‖x3‖2 − ‖x4‖2)− (d23v − d24v)







3. Let U ← U ∪ {v}; if U = V stop otherwise repeat from Step 1

Exact on complete and 3-trilateration graphs, heuristic otherwise
BALCOR11 – p. 52


	At a glance
	How does a weighted graph look?
	How does a weighted graph look?

	Drawing a graph
	The number of embeddings
	The number of embeddings
	The number of embeddings
	The number of embeddings

	Vertex orders and embeddings
	An interesting graph class
	Proteins
	Protein distances
	Sphere intersection
	When does it fail?
	The Branch-and-Prune algorithm
	BP properties
	Symmetry
	BP root node symmetry
	Number of solutions
	A BP search tree example
	A BP search tree example

	Discretization/pruning distances
	Symmetry by pruning distances
	Reflection symmetry
	Structure of the BP tree ($mathbb {R}^2$)
	Structure of the BP tree ($mathbb {R}^2$)
	Structure of the BP tree ($mathbb {R}^2$)

	Effect of pruning distance $d_{14}$
	Effect of pruning distance $d_{14}$

	Effect of pruning distance $d_{25}$
	Effect of pruning distance $d_{25}$

	Effect of pruning distance $d_{15}$
	Effect of pruning distance $d_{15}$
	Effect of pruning distance $d_{15}$
	Effect of pruning distance $d_{15}$

	Groups fixing the trees
	Discretization group
	Pruning group
	Power of two
	Why the ``probability 1''?
	Polynomial cases
	A polynomial BP?
	BP subtree rooted at $u$
	Constant treewidth
	Constant-bounded treewidth
	Polynomial time BP
	Application to proteomics
	Virtual hydrogen backbone
	Listing atoms twice
	Re-orders
	Uncertain distances
	The actual situation
	hspace *{-5cm} {it i},BP
	Implementations
	Sequential code
	Parallel code
	A selection of current work
	The end
	Appendix
	Continuous formulation
	General-purpose methods
	MDGP-specific methods
	Geometric build-up

