

Combinatorial Distance Geometry: the meeting point between proteins and mathematics

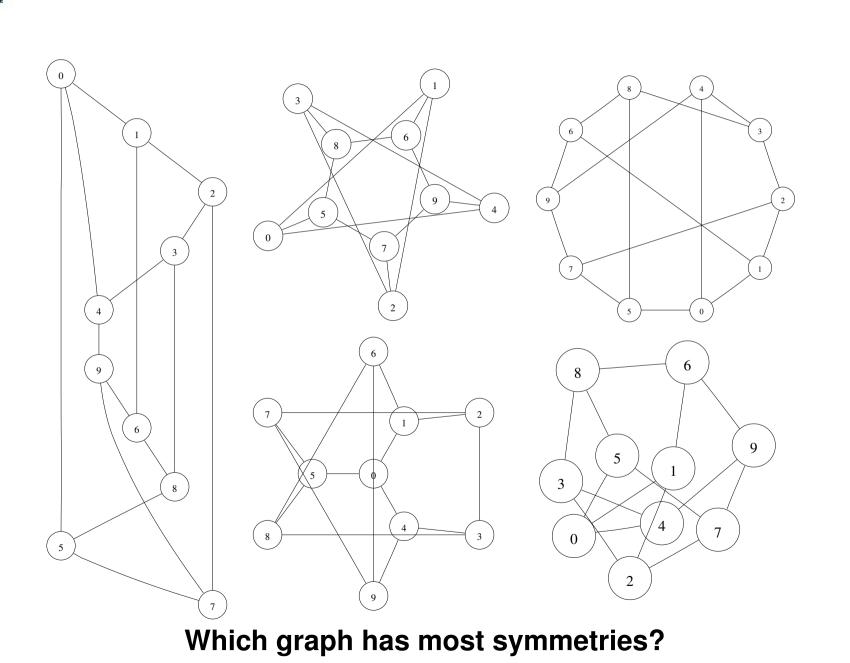
Leo Liberti

LIX, École Polytechnique, France

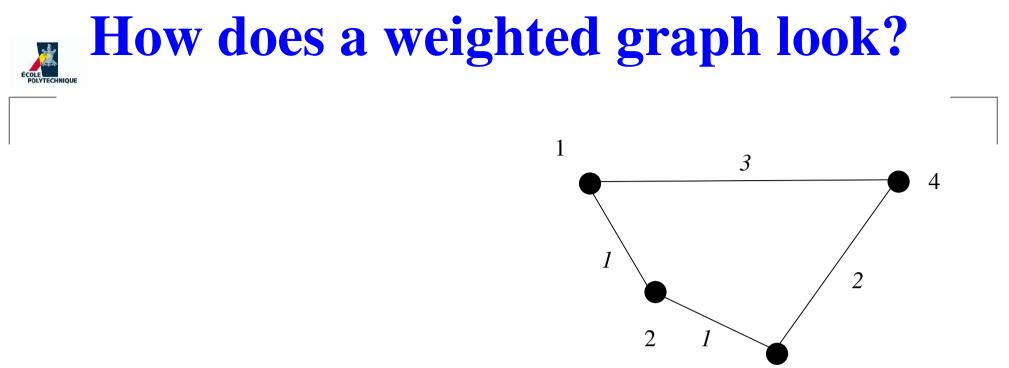
Joint work with:

C. Lavor (IMECC-UNICAMP), N. Maculan (COPPE-UFRJ), A. Mucherino (Univ. Rennes)

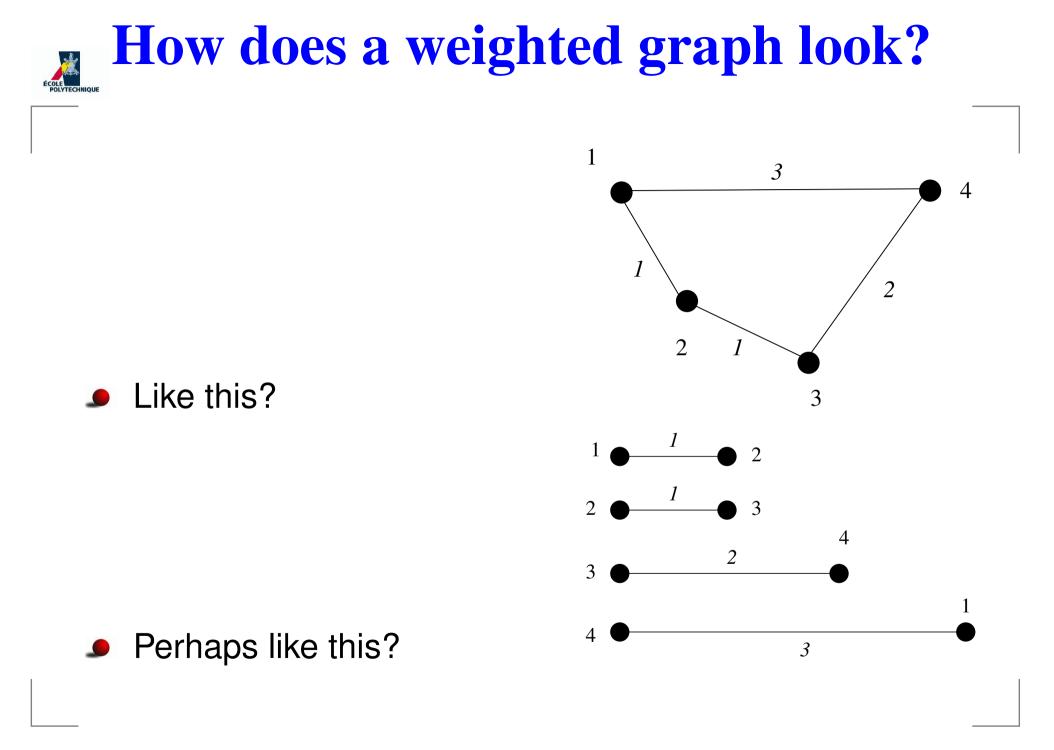
J. Lee (Univ. Michigan), B. Masson (INRIA), M. Nilges (Inst. Pasteur), T. Malliavin (Inst. Pasteur)



BALCOR11 - p. 2



3



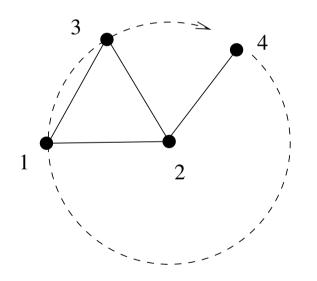
Drawing a graph

 Given a simple weighted undirected graph G = (V, E) with a distance function d : E → ℝ₊, solve the constraint system:

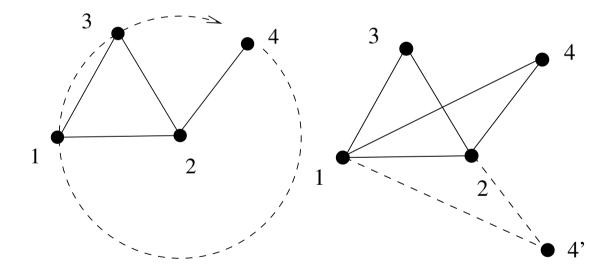
$$\forall \{u, v\} \in E \quad \|x_u - x_v\| = d_{uv} \quad (1)$$

 ${\scriptstyle {\color{red} \hspace{-.05in} {\color{red} {\color{red} \hspace{-.05in} {\color{red} \{red} {\color{red} \hspace{-.05in} {\color{red} \hspace{-.05in} {\color{red} \hspace{-.05in} {\color{red} \end{array} {\color{red} \hspace{-.05in} {\color{red} {\color{red} \hspace{-.05in} {\color{red} \hspace{-.05in} {\color{red} \hspace{-.05in} {\color{red} \hspace{-.05in} {\color{red} \hspace{-.05in} {\color{red} \hspace{{red} \hspace{-.05in} {\color{red} \hspace{-.05in} {\color{red} \hspace{-.05in} {\color{red} \hspace{{red} \hspace{{red} {\color{red} \hspace{red} \hspace{{red} {\color{red} \hspace{red} \hspace{red} {\color{red} {\color{red} \hspace{red} {\color{red} \hspace{red} \hspace{red} {\color{red} {\color{red} {\color{red} \hspace{red} {\color{red} r} {\color{red} {\color{red} \hspace{red} {\color{red} {\color{red} r} {\color{red} {\color{red} r} {\color{red} r} {\color{red} {\color{red} r} {\color{red} {\color{red} r} {\color{red} {\color{red} red} {\color{red} r} {\color{red} {\color{red} r} r} {\color{red} r} r} {\color{red} r} {\color{r} r} r} {\color$

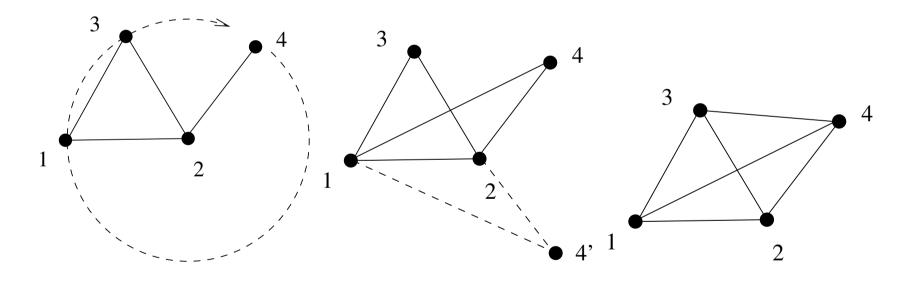
 Certain graphs have uncountably many (incongruent) embeddings



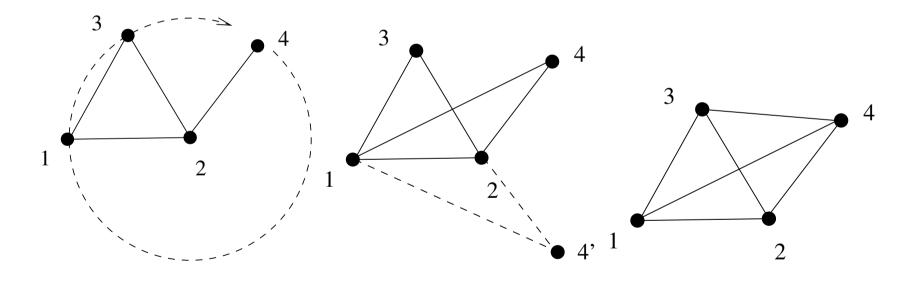
- Certain graphs have uncountably many (incongruent) embeddings
- Others have finitely many



- Certain graphs have uncountably many (incongruent) embeddings
- Others have finitely many
- Cliques, for example, have at most one



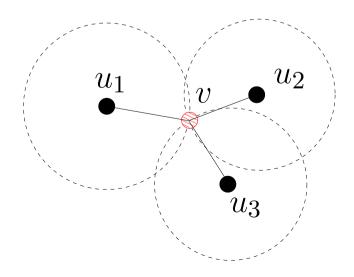
- Certain graphs have uncountably many (incongruent) embeddings
- Others have finitely many
- Cliques, for example, have at most one



Focus on discrete cases: get a combinatorial constraint problem with decision variables in continuous space

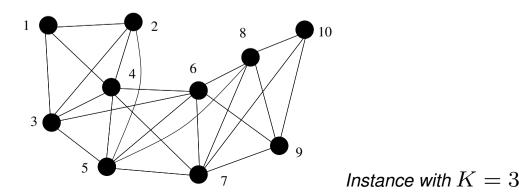
Vertex orders and embeddings

- Assume G has an embedding
- If \exists an order < on V such that:
 - 1. an embedding is known for the first K + 1 vertices
 - 2. the *v*-th vertex is adjacent to at least K + 1 predecessors
- Then x_v is the unique intersection of spheres $S(x_u, d_{uv})$ for u adjacent predecessor of v

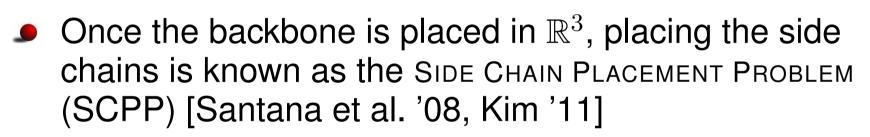


An interesting graph class

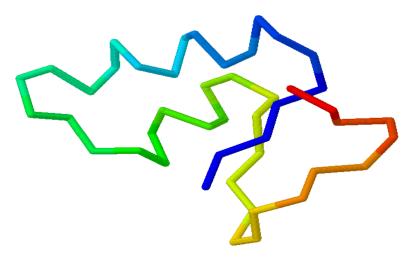
- So, if every (K+1)-tuple of <u>consecutive</u> vertices is a clique in G, we can find an embedding in polynomial time
- (Computing a K + 1 sphere intersection in \mathbb{R}^K amounts to solving a square linear system)
- Consider graphs with a weaker condition
 every K-tuple of consecutive vertices is a clique in G
- This is called the Discretizable Molecular Distance GEOMETRY PROBLEM (DMDGP)



Proteins



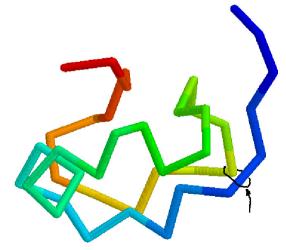
• The backbone is a total order < on a set V of atoms

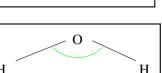


Protein distances

- Covalent bond distances $d_{v-1,v}$ are known H
- Angles between covalent bonds are known H
- $= \Rightarrow d_{v-2,v} \text{ is known for all } v > 3$
- Distances d_{v-3,v} are always < 6Å, so they can be measured using NMR techniques
 We assume these distances are exact: this is false in practice, but we can find orders for which this assumption holds (see later if I have time)
- NMR might give other distances too

Atoms may be distant order-wise but closer than $6{\rm \AA}$ in space





Η

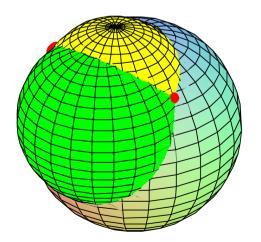
Sphere intersection

Situation:

- $x_{v-3}, x_{v-2}, x_{v-1}$ are known
- $d_{v,v-1}, d_{v,v-2}, d_{v,v-3}$ are known

and we're trying to find x_v

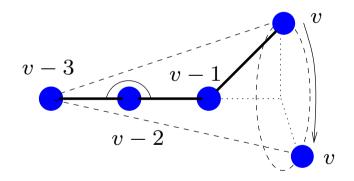
Then $x_v \in \bigcap_{i \in \{1,2,3\}} S(x_{v-i}, d_{v-i,v})$, the intersection of 3 spheres in \mathbb{R}^3 , which in general contains 2 points



When does it fail?

The intersection of 3 spheres in \mathbb{R}^3 might fail to have *exactly two* points:

- it has zero points if the spheres do not intersect (but then the graph fails to have an embedding)
- it has uncountably many points (or a single one) if $d_{v-3,v-1} = d_{v-3,v-2} + d_{v-2,v-1}$



Since the set of "flat triangles" over v - 3, v - 2, v - 1 has Lebesgue measure 0 in the set of all triangles, this event has probability 0

The Branch-and-Prune algorithm

v: rank of current atom $x_{< v}$: partial embedding to rank v - 1*G*: instance X: current pool of embeddings S(y, r): \mathbb{R}^K sphere centered at y with radius r

BRANCHANDPRUNE($v, x_{< v}, G, X$):

Let
$$S \leftarrow \bigcap_{i \in \{1,...,K\}} S(x_{v-i}, d_{v-i,v}) = \{s_1, ..., s_q\}$$
, where $q \in \{0, 2\}$
for $s \in S$ do
Extend the current embedding to $x = (x_{< v}, s)$
if $\forall u \in AdjPred(v) ||x_u - x_v|| = d_{uv}$ then
if $(v = n)$ then
Let $X \leftarrow X \cup \{x\}$
else
BRANCHANDPRUNE $(v + 1, x, G, X)$
end if
end if
end for

BP properties

- The DMDGP is NP-hard [Lavor et al., COAP, to appear]
- The BP has worst-case exponential time
- With probability 1, it finds all incongruent embeddings of G extending the initial partial embedding known for x_1, \ldots, x_K
- In practice, it performs very efficiently with respect to speed and accuracy
- Can embed 10,000 vertices in a 13 seconds of CPU time
- Two empirical observations:
 - 1. the number of solutions it finds is always a power of two
 - **2.** |V| versus CPU time plots are always linear-like for PDB

Symmetry

BP root node symmetry

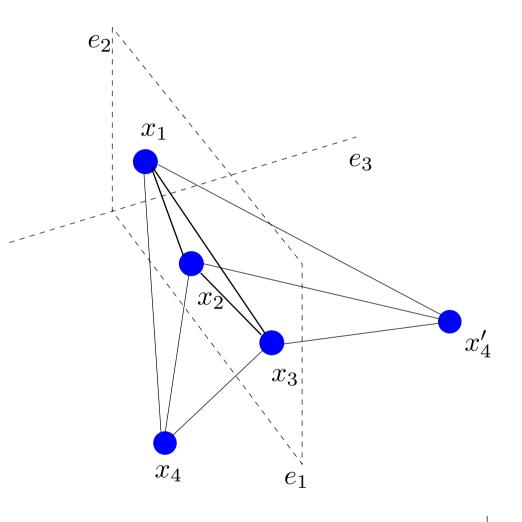
[Lavor et al. COAP, to appear]

• Once the first 3 atoms are placed, the fourth can generally be placed in two positions x_4, x'_4

Thm.

 x'_4 is a reflection of x_4 w.r.t. the plane defined by x_1, x_2, x_3

The BP tree is symmetric below level 3, so it suffices to just consider half of the BP tree



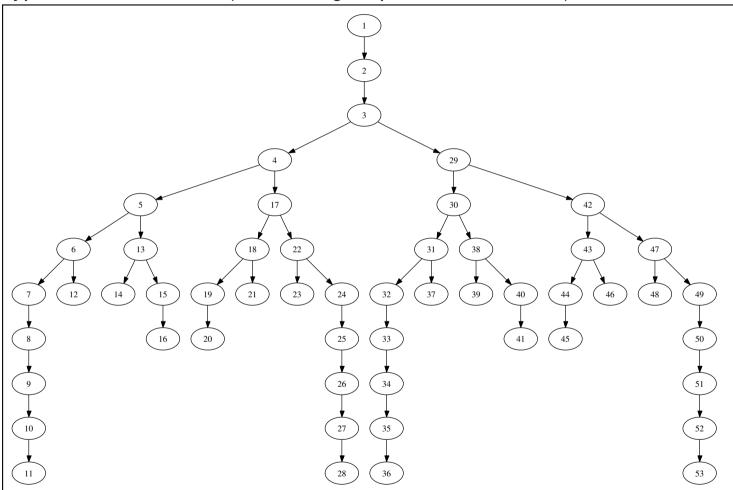
Number of solutions

			Instance	X
_	Instance mmorewu-2 mmorewu-3 mmorewu-4 mmorewu-5 mmorewu-6	X 2 2 4 4 4	1brv 1aqr 2erl 1crn 1ahl 1ptq 1brz 1hoe 1lfb 1pht 1jk2 1f39a 1acz 1poa 1fs3 1mbn 1rgs 1m40 1bpm 1n4w 1mqq 1rwh 3b34 2e7z 1epw	1211812111114111111111111111
	lavor10_0 lavor15_0 lavor20_0 lavor25_0 lavor30_0 lavor35_0 lavor40_0 lavor45_0 lavor50_0 lavor55_0 lavor60_0	4 16 8 2 64 2 4096 64 64		

For all tested DMDGP instances, $\exists \ell \in \mathbb{N}$ such that $|X| = 2^{\ell}$

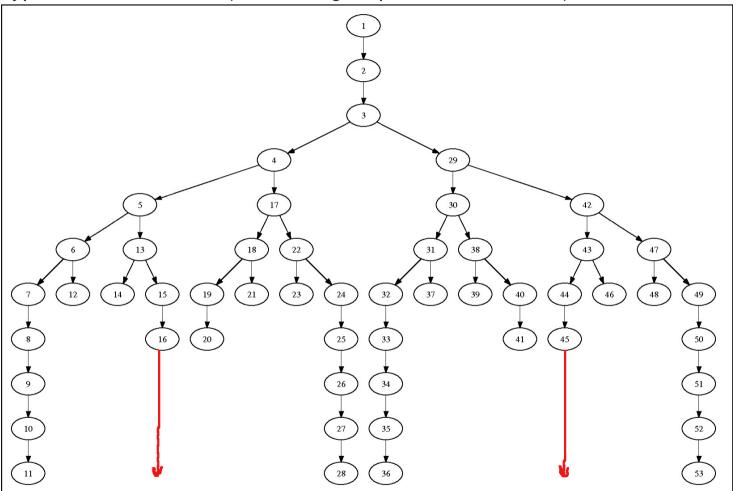
- results only refer to $\frac{1}{2}$ of the tree, multiply by 2 to get |X|

A BP search tree example



- Root node symmetry forces |X| to be even
- No evident reason why |X| should be a power of two

A BP search tree example



- Root node symmetry forces |X| to be even
- No evident reason why |X| should be a power of two (why not symmetric paths to level |V| from nodes 16 and 45?)

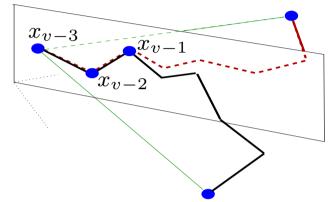
Discretization/pruning distances

- Let $E_D = \{\{u, v\} \mid |u v| \le K\}$ and $E_P = E \setminus E_D$
- E_D are the discretization distances
 - they guarantee that the instance is a DMDGP
 - they allow the construction of the complete BP tree
 - this tree has $2^{|V|-3}$ leaves, $2^{|V|-4}$ if we consider root node symmetry
- \bullet E_P are the pruning distances
 - they allow pruning of the BP tree
 - not at all clear why they should prune branches symmetrically

Symmetry by pruning distances

[Liberti et al., LNCS (COCOA), 2011]

Given an embedding x, let R_x^v be the reflection w.r.t. the hyperplane



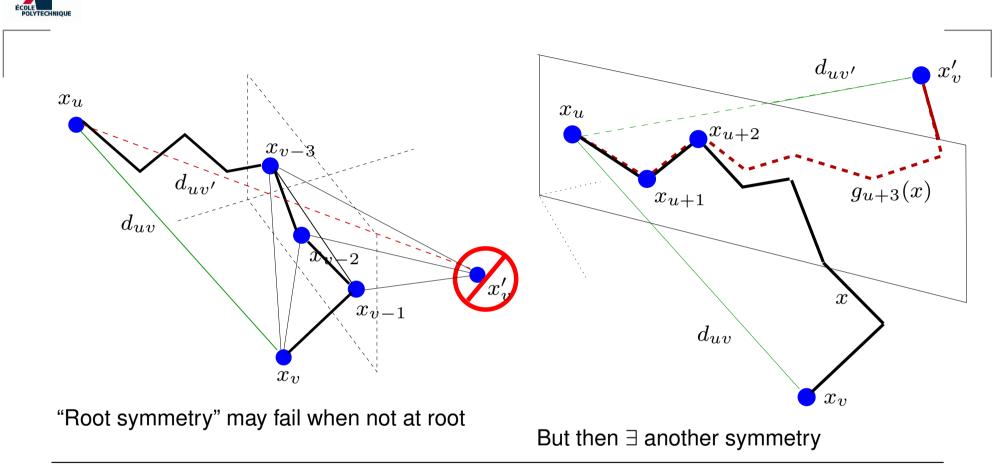
through x_{v-K}, \ldots, x_{v-1}

Thm.

ÉCOLE

With prob. 1, for all
$$v > K, u < v - K$$
 there is a finite set $H^{uv} \subseteq \mathbb{R}_+$ with
 $|H^{uv}| = 2^{v-u-K}$ s.t.
 $\forall x \in X (\underbrace{\|x_u - x_v\|}_{\text{plays the role of pruning dist.}} \in H^{uv})$
plays the role of pruning dist.
Furthermore, for $x' \in X \setminus \{x\}$,
 $||x_u - x_v|| = ||x'_u - x'_v||$ iff $x'_v = R^{u+K}_x(x_v)$

Reflection symmetry

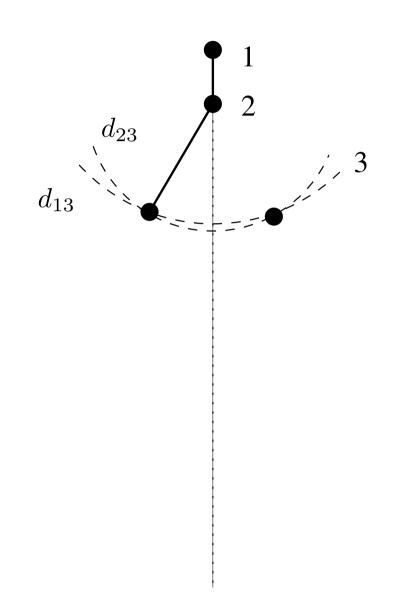


Reflection "from rank v": define partial reflections operators

$$g_v(x) = (x_1, \dots, x_{v-1}, R_x^v(x_v), \dots, R_x^v(x_n))$$
(2)

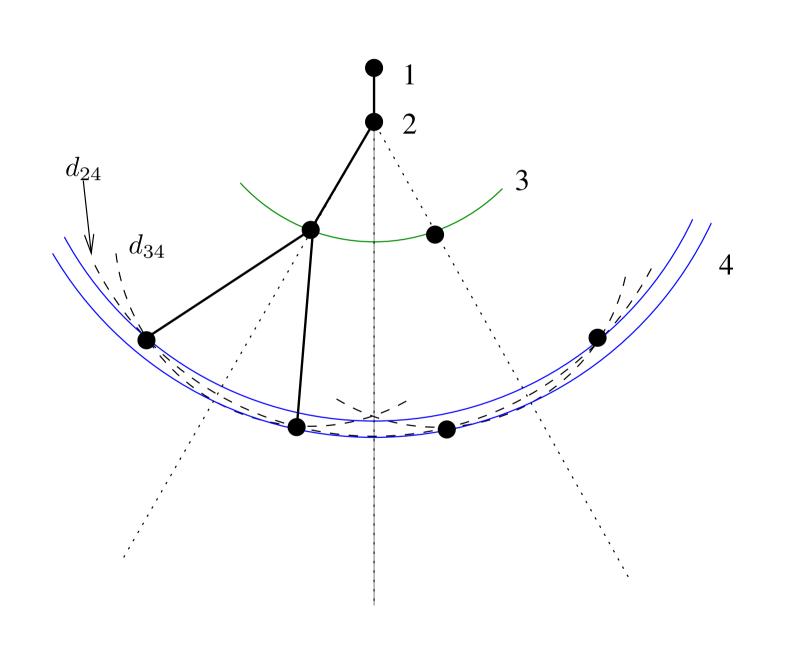
Structure of the BP tree (\mathbb{R}^2)

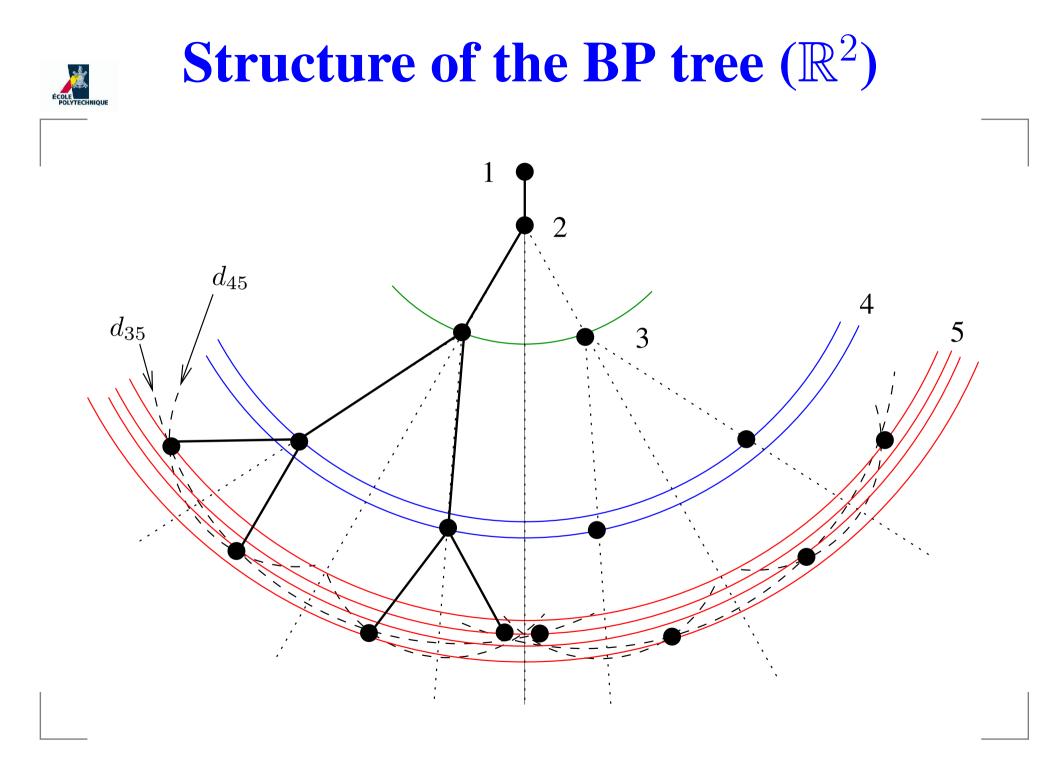
ÉCOLE POLYTECHI

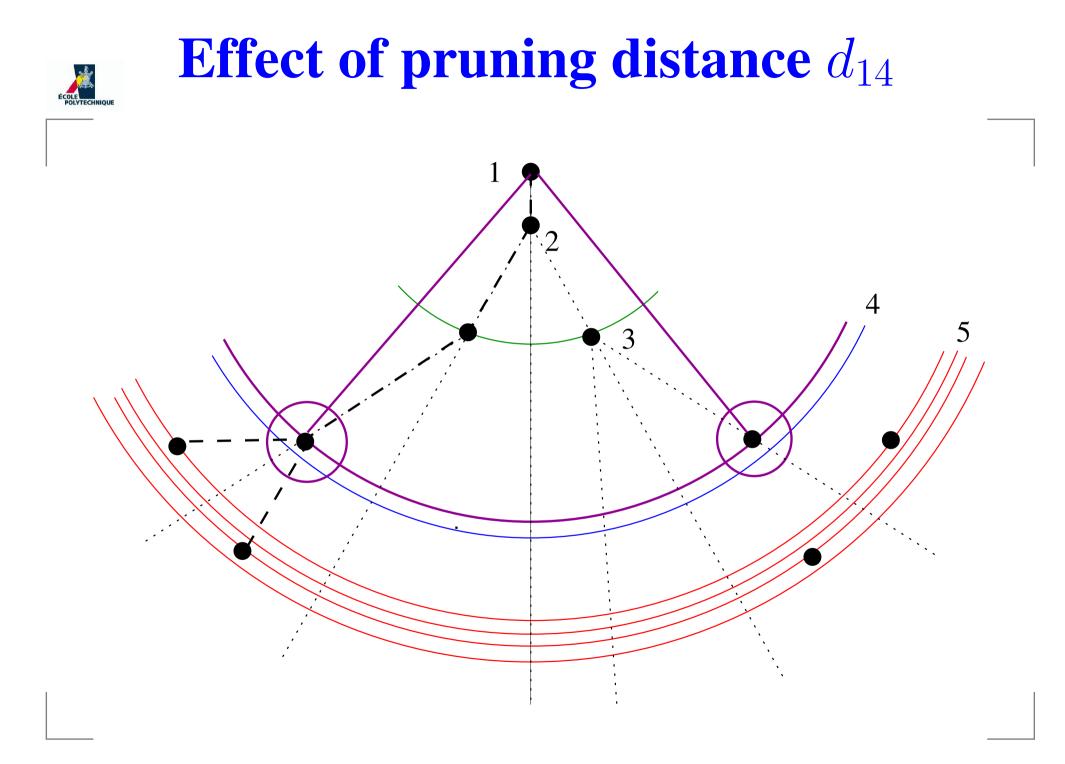


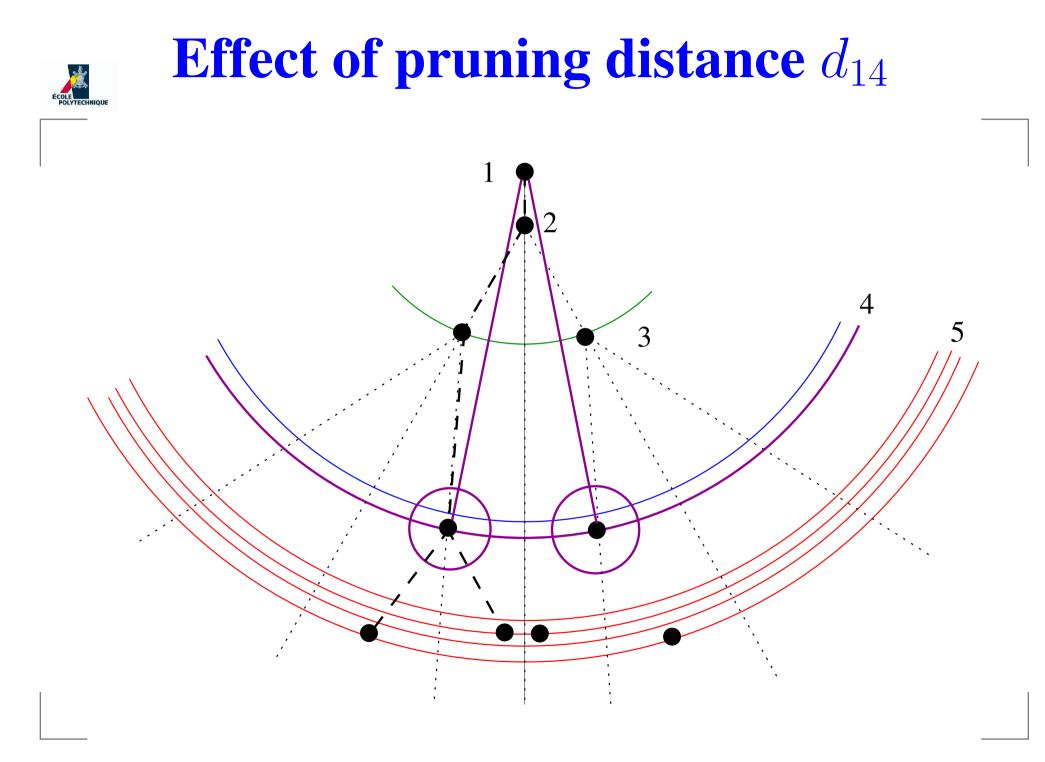
Structure of the BP tree (\mathbb{R}^2)

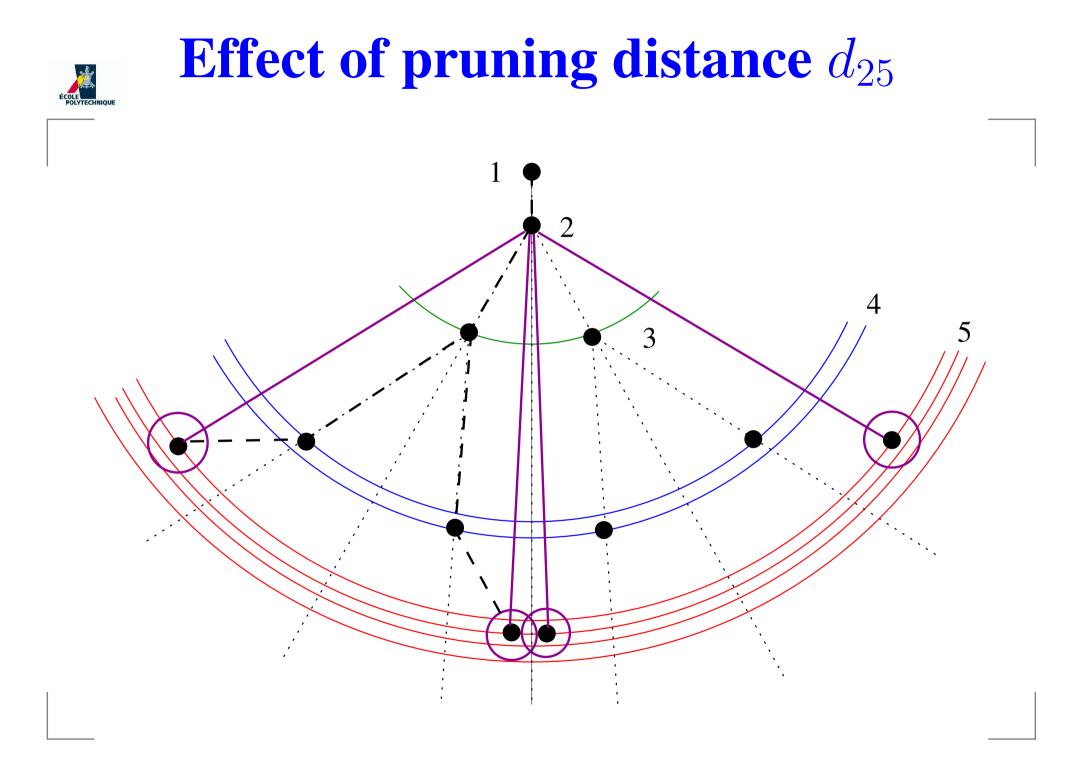
ÉCOLE POLYTECHI

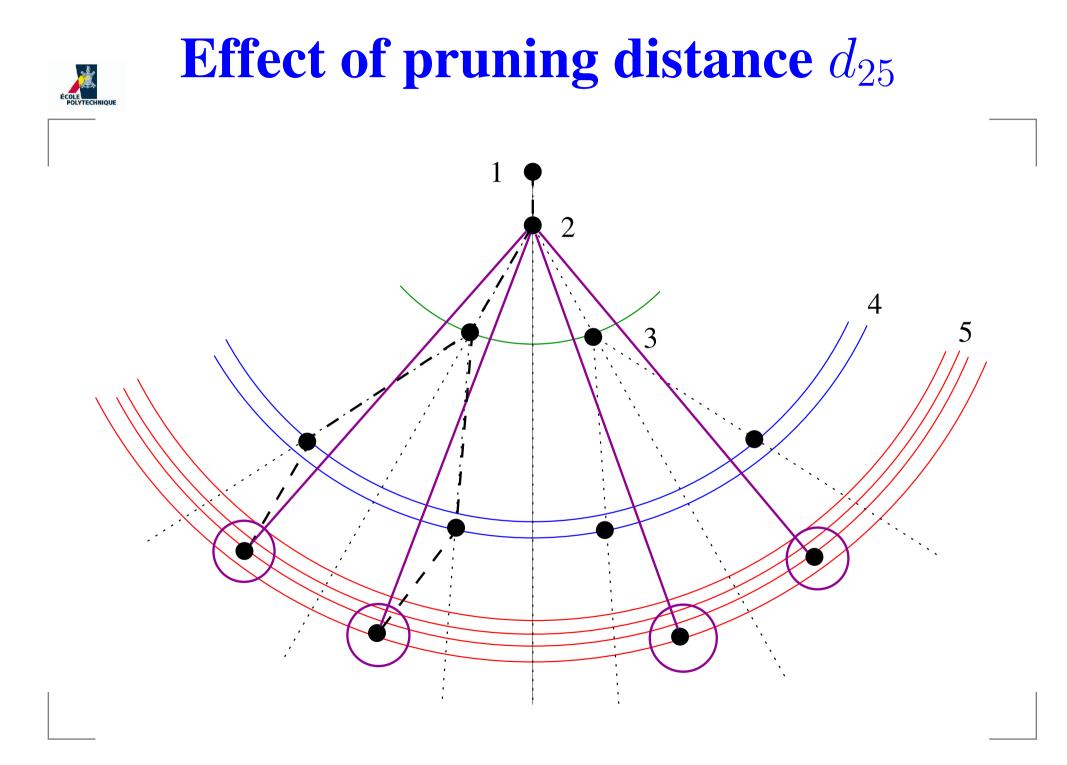


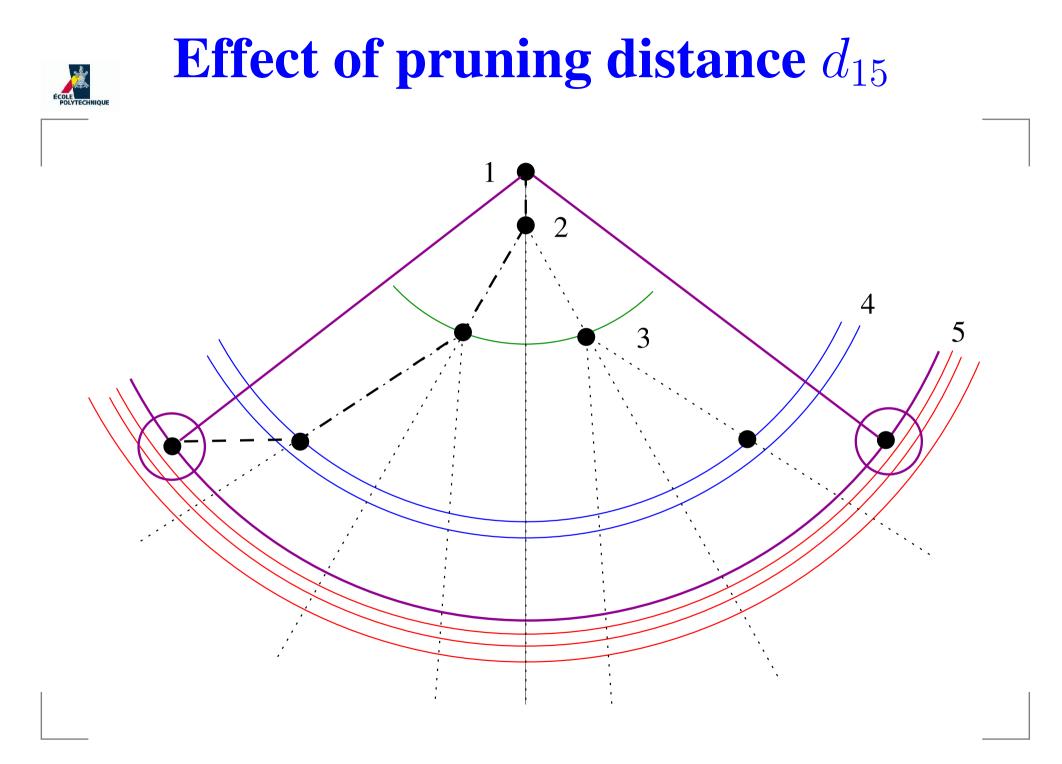


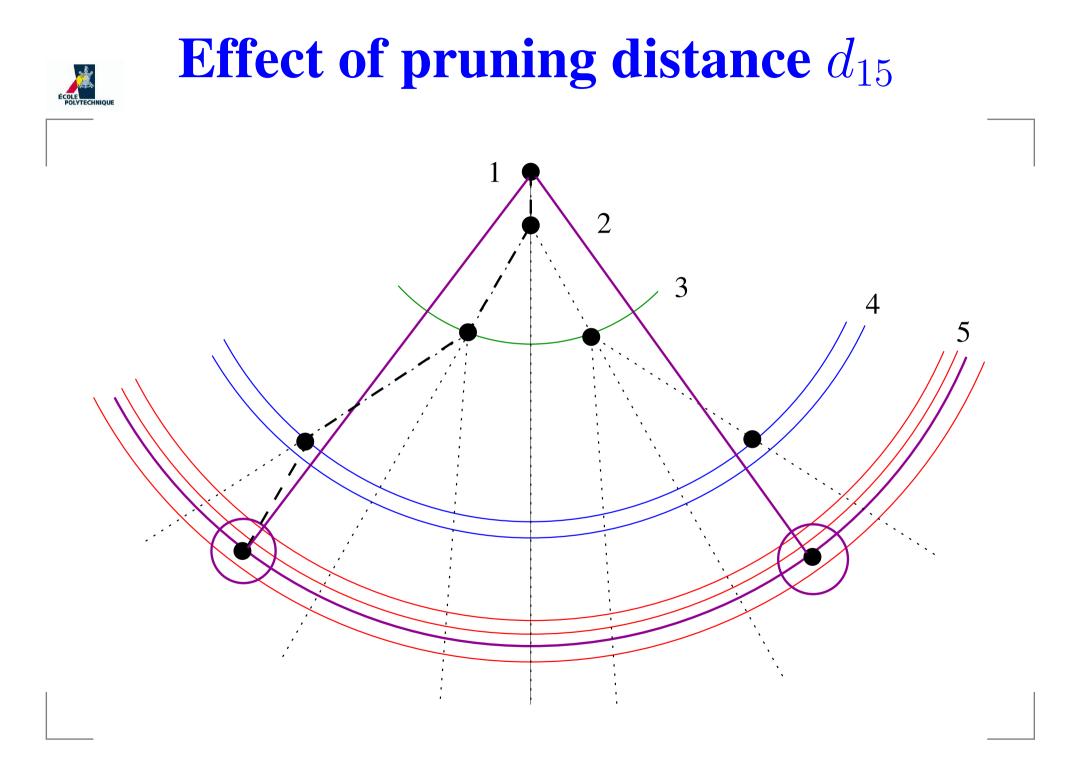


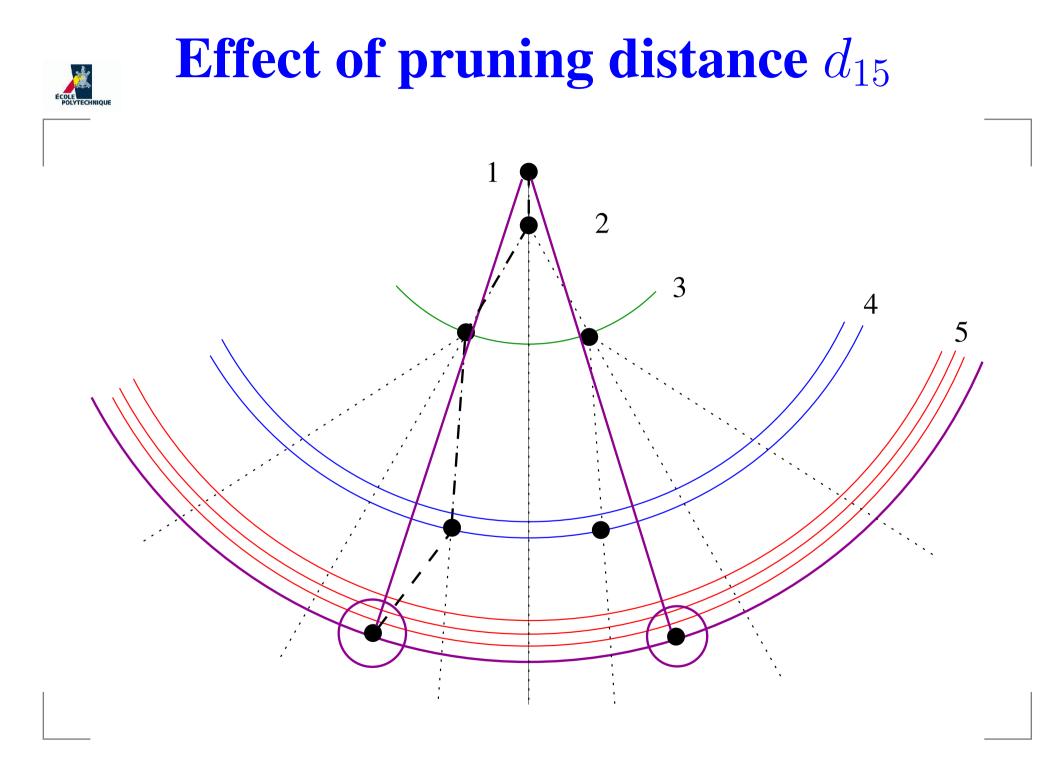


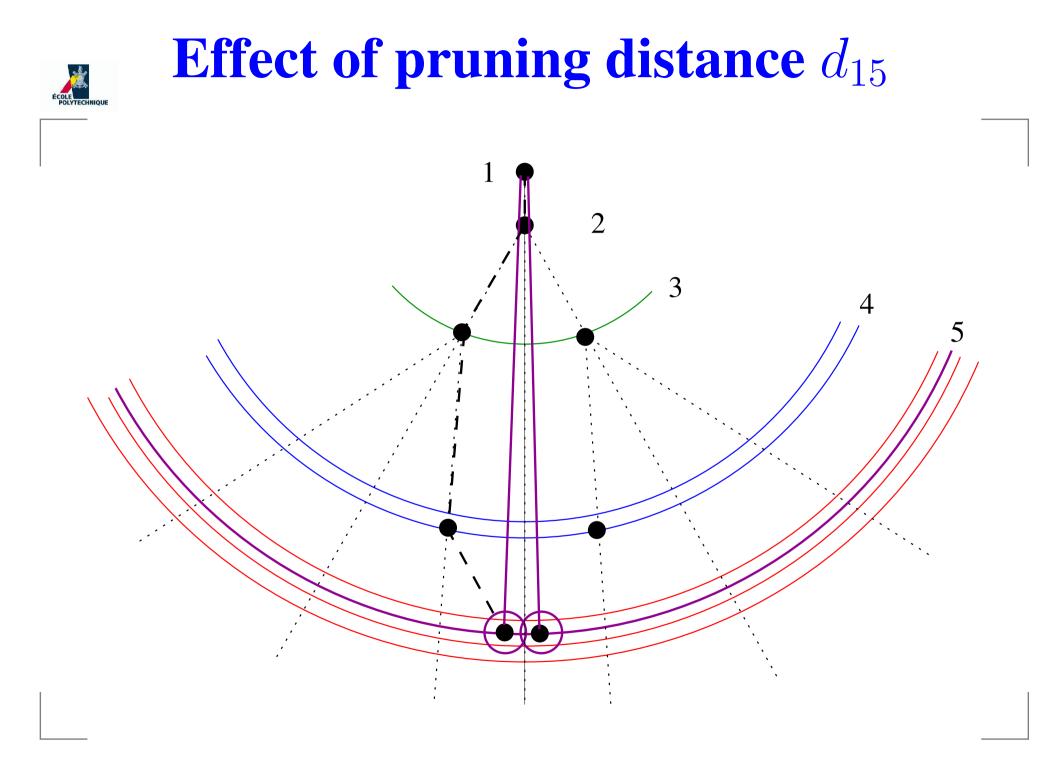






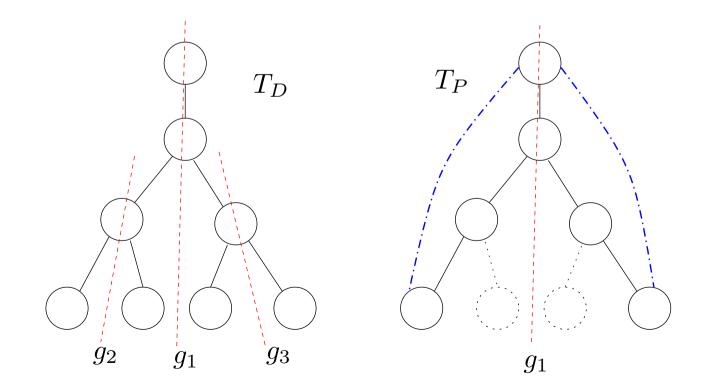






Groups fixing the trees

- Let T_D be a full BP binary search tree
- Let T_P be the subtree of T_D representing only feasible branches
- Invariant group for T_D : all partial reflections (g_1, g_2, g_3)
- Invariant group for T_P : only some partial reflections (g_1)



Discretization group

Group of partial reflections fixing the complete BP tree (no pruning distances)

- The following hold with probability 1 $\forall v > K$:
 - 1. g_v is injective with probability 1 (by reflection)
 - 2. g_v is idempotent (by reflection)

3. $\forall u > K, u \neq v$, g_u and g_v commute (nontrivial)

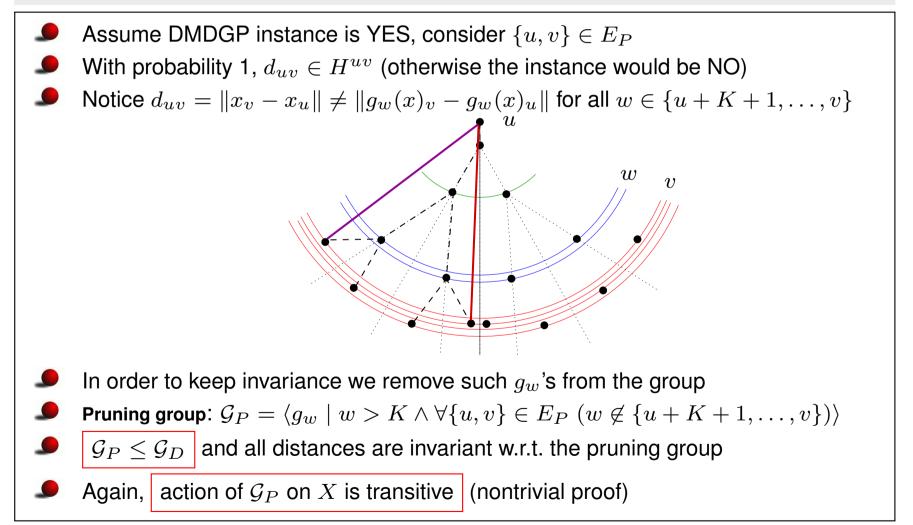
Thus, $\mathcal{G}_D = \langle g_v \mid v > K \rangle$ is an Abelian group under composition
isomorphic to C_2^{n-K})

By previous thm, discretization distances are invariant under \mathcal{G}_D

- The action of \mathcal{G}_D on X is transitive, i.e. $\forall x, x' \in X \exists g \in \mathcal{G}_D \ (x' = g(x))$
 - This action has only one orbit, i.e. $X = \mathcal{G}_D x$

Pruning group

Group of partial reflections fixing the actual BP tree (with pruning distances)



Power of two

Thm.

 $\exists \ell \in \mathbb{N} \ (|X| = 2^{\ell})$

Proof

With probability 1:

$$\mathcal{G}_D \cong C_2^{n-K} \Rightarrow |\mathcal{G}_D| = 2^{n-K}$$

•
$$\mathcal{G}_P \leq \mathcal{G}_D \Rightarrow |\mathcal{G}_P| \mid |\mathcal{G}_D| \Rightarrow \exists \ell \in \mathbb{N} \mid \mathcal{G}_P| = 2^{\ell}$$

• Action of
$$\mathcal{G}_P$$
 on X is transitive $\Rightarrow \mathcal{G}_P x = X$

• Idempotency
$$\Rightarrow$$
 for $g, g' \in \mathcal{G}_P$, if $gx = g'x$ then $g = g' \Rightarrow |\mathcal{G}_P x| = |\mathcal{G}_P|$

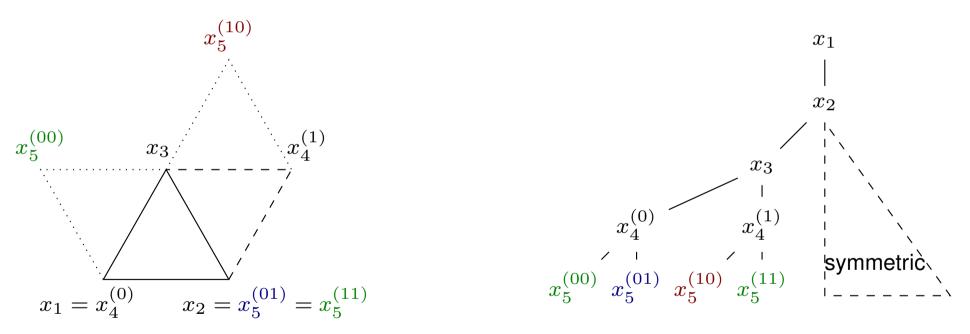
• Thus,
$$|X| = |\mathcal{G}_P x| = |\mathcal{G}_P| = 2^\ell$$

ÉCOLE

Why the "probability 1"?

• Not all "YES" DMDGP instances have $|X| = 2^{\ell}$

But the set of such instances (with real data) has Lebesgue measure zero in the set of all DMDGP instances



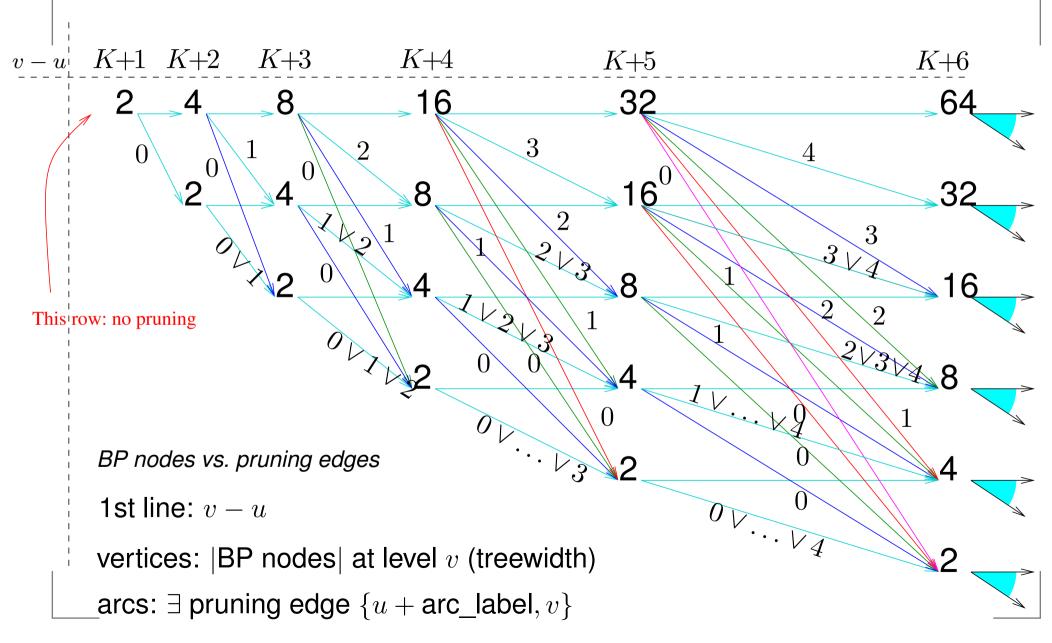
Happens when > 1 vertices are embedded in the same position $x_5^{(01)}$ should be infeasible, but $x_5^{(01)} = x_5^{(11)}$ (event with prob. 0)

Polynomial cases

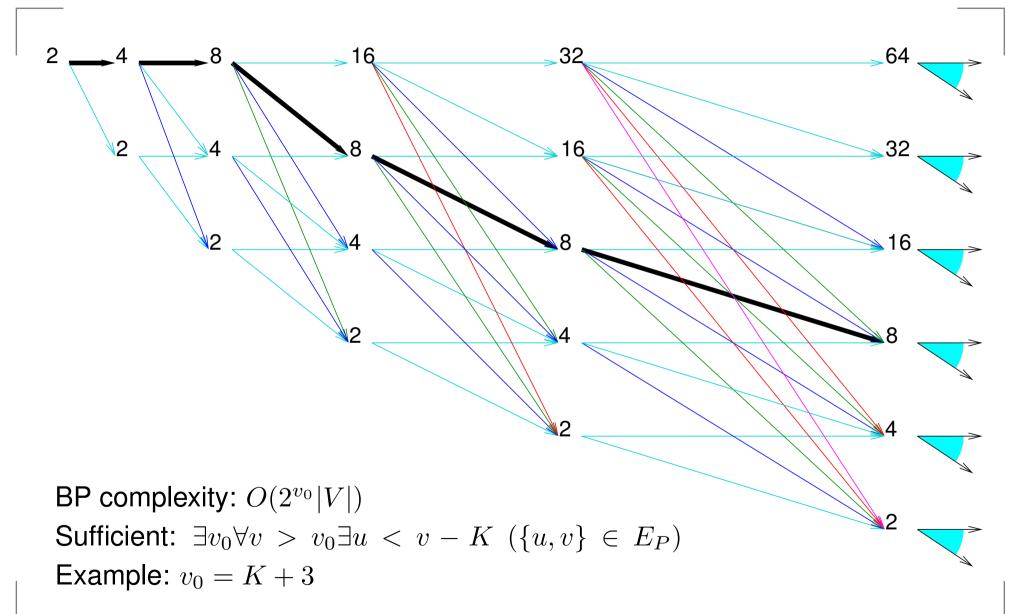
A polynomial BP?

- We never noticed any exponential-time increase behaviour in all our experiments (several scores of instances generated from PDB files)
- We recently embedded a 10000-atom protein backbone in 13s on one core
- It is easy to show that BP has worst-case exponential complexity
- Are a polynomial case of the DMDGP?
- Complexity depends on BP nodes; since height $\leq |V|$, only need to consider treewidth
- A pruning edge $\{u, v\}$ with u < v K reduces the number of nodes at level v from 2^{v-K} to $2^{v-K-u+1}$ (by symmetry)

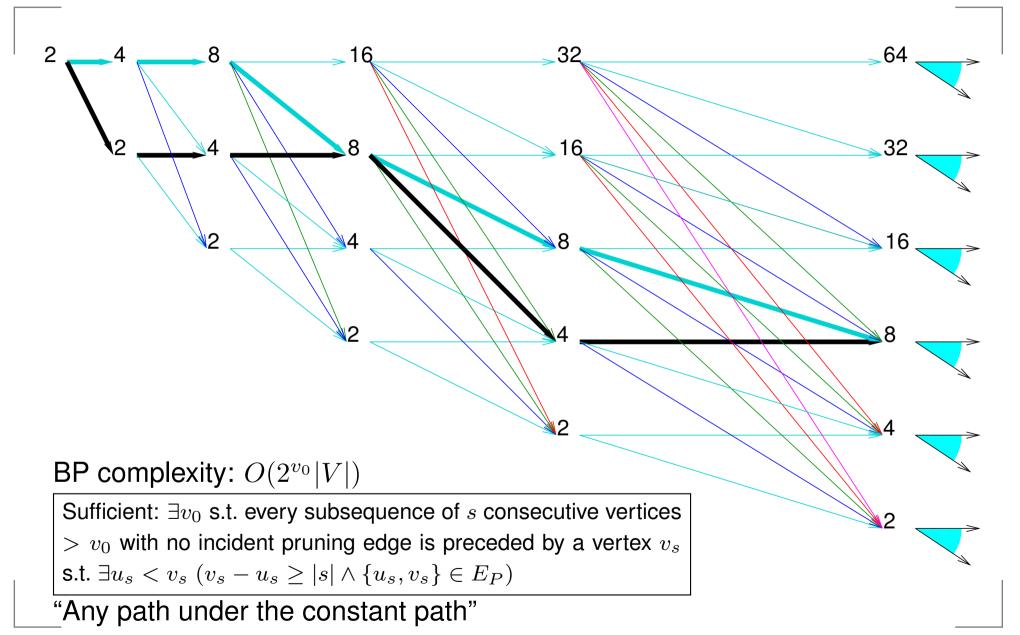
BP subtree rooted at u



Constant treewidth



Constant-bounded treewidth



Polynomial time BP

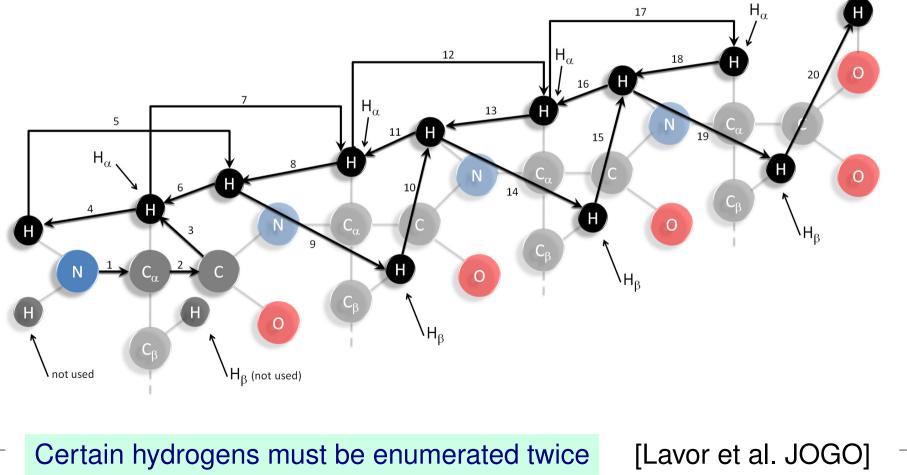
- We can also allow treewidth growth as long as it's logarithmic in n
- This yields a polynomial-time BP well, fixed-parameter tractable w.r.t. v₀

We tested all our protein instances: all display either constant or const-bounded treewidths with very low v_0 (i.e. $v_0 = 4$)

Application to proteomics

Virtual hydrogen backbone

- The most accurate NMR distances are <u>between hydrogen atoms only</u>, but the actual backbone is a chain of N-C_{α}-C groups
- So find a virtual backbone composed of hydrogens only, and such that its order satisfies the DMDGP requirements



Listing atoms twice

If a hydrogen is listed twice, then there are $i \neq j \in V$ indexing the same atom

• Thus
$$x_i = x_j$$
 and $d_{ij} = 0$

For all k such that $\{i, k\} \in E$, we have that $\{j, k\} \in E$ as
 $d_{jk} = d_{ik} + 0$, and

$$d_{ij} + d_{jk} = 0 + d_{jk} = d_{ik}$$

so Strict Triangular Inequalities do not hold for all atom triplets

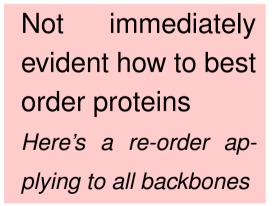
- However, it only fails on *nonconsecutive* triplets Hence, BP still applies
- Also, zero pruning distances help keeping floating point errors under control

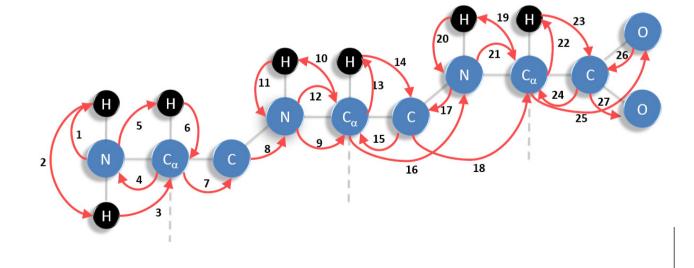
Re-orders

Defn.

A repetition order (re-order) is a finite sequence on V

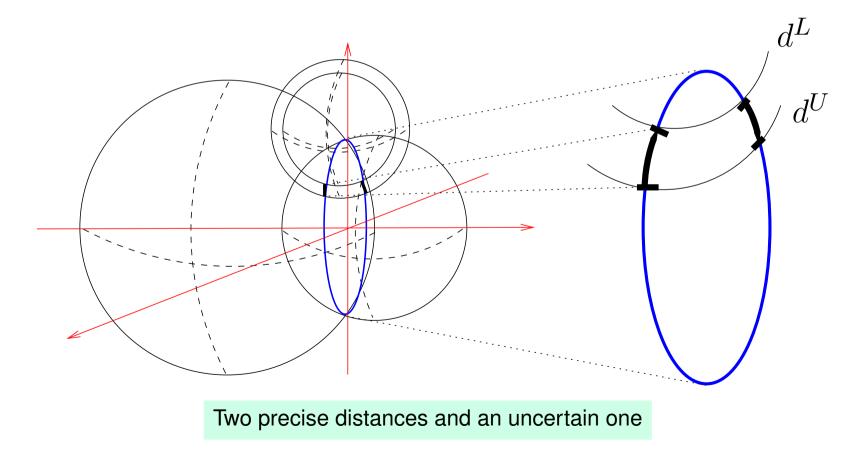
- Re-orders generalize "counting vertices more than once"
- They add more flexibility to exploit certain distances as discretization distances
- Essentially, they provide a tool with which to hand-craft convenient vertex orders for interesting instance classes





Uncertain distances

- Typically, NMR provides uncertain distances, modelled by intervals $[d_{uv}^L, d_{uv}^U]$
- Cannot be used for discretization

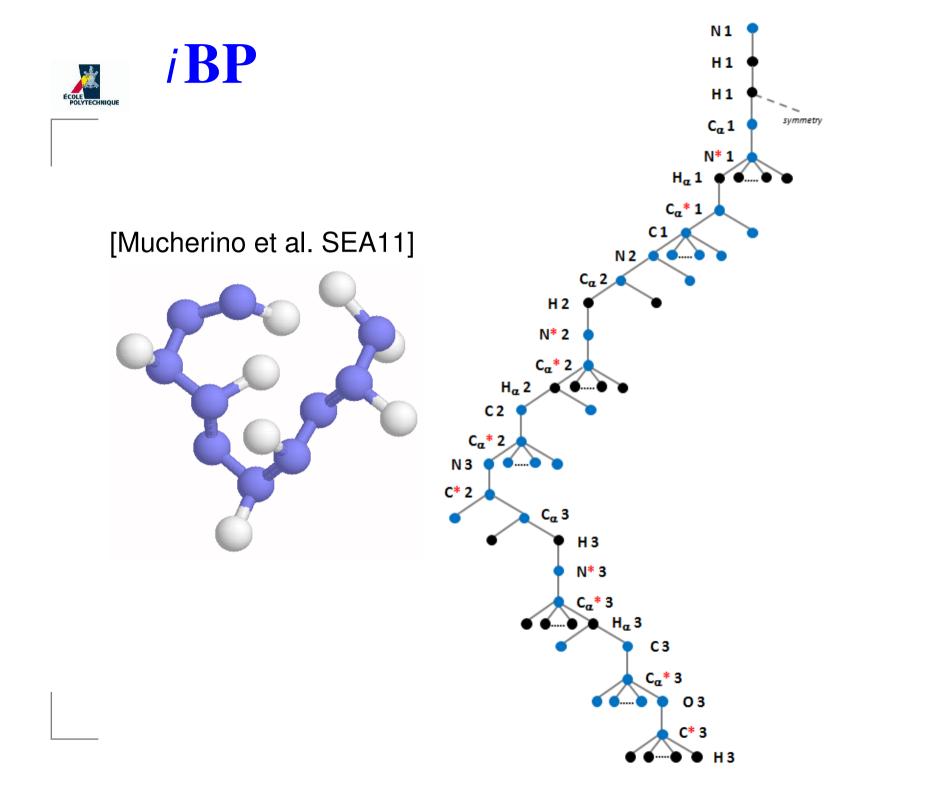


The actual situation

- We know several distances d_{uv} precisely because of chemical properties
- Some distances take values in a finite set D_{uv}
- The distribution of precise/discrete/uncertain distances on the protein backbone does not satisfy the DMDGP requirements

Re-orders provide a solution: use all **precise** distances for discretization, plus a few of the **discrete** whenever needed; **uncertain** distances are used for pruning

- Pruning with intervals is easy: if the current point x_v is s.t. $||x_v - x_u|| \in [d_{uv}^L, d_{uv}^U]$ for all $u \in \alpha(v)$ accept it, otherwise prune it
- Discrete distances D_{uv} simply give rise to BP nodes at
 level v 1 with potentially $2|D_{uv}|$ subnodes



Implementations

Sequential code

Mucherino et al. LNCS 2010

- The code is available in open source
- Download: http://www.antoniomucherino.it/en/mdjeep.php
- Any doubt, ask the MASTER (Antonio)

Parallel code

Seconds of user CPU on Grid5000 (www.grid5000.fr)

	CPUs					
V	1	2	8	64		
5000	3.21	1.30	0.54	0.36		
7500	4.73	3.15	1.25	0.93		
10000	13.38	5.49	2.49	1.57		

Embed subgraphs then glue embeddings (rigidity \Rightarrow exact)

A selection of current work

- Work with biochemists/bioinformaticians at Institut Pasteur to access and treat real NMR data
- Use $\mathcal{G}_P x = X$ result from symmetry to obtain all solutions from just one
- Extend complexity study to actual problem with discrete/uncertain distances
- **Progress on "MDGP** \in **NP**?" question

The end

- Survey 1: Liberti, Lavor, Mucherino, Maculan, Molecular distance geometry methods: from continuous to discrete, International Transactions in Operational Research, 18:33-51, 2010
- Survey 2: Lavor, Liberti, Maculan, Mucherino, Recent advances on the discretizable molecular distance geometry problem, European Journal of Operational Research, invited survey (to appear)

Appendix

Continuous formulation

Solving the system

$$\forall \{i, j\} \in E \quad ||x_i - x_j|| = d_{ij},$$
 (3)

is numerically challenging

LHS involves $\sqrt{\text{arg}}$, floating point ops \Rightarrow arg $< 0 \Rightarrow$ error and abort

 \Rightarrow square both sides

Usually, cast as a penalty objective to be minimized

$$\min_{x} \sum_{\{i,j\}\in E} (||x_i - x_j||^2 - d_{ij}^2)^2.$$
(4)

 Unconstrained minimization of a polynomial of fourth degree

General-purpose methods

- sBB (exact) [L. et al. '06]: OK on small and medium-sized instances because we know the optimal value of the objective (0), lower bound is tight at the initial tree levels
- VNS (heur) [L. et al. '05, L. et al. '06]: good for large(ish) instances
- MultiLevel Single Linkage (heur) [Kucherenko et al. '06]: so-so

ſ			sBB		VNS		MLSL	
	Atoms	Variables	OF Value	Time	OF Value	Time	OF Value	Time
	cube8	24	0	0.22	0	1.21	0	13.56
	cube27	81	0	30.39	0	34.01	0	300.285
	cube64	192	0	2237.73	0	398.875	0	2765.13
ſ	lavor5	15	0	0.02	0	0.48	0	0.57
	lavor10	30	0	1.12	0	7.06	0	69.71
	lavor20	60	0	2.25	0	49.99	0	411.152
	lavor30	90	0	488.87	0	352.06	0	1634.09
	lavor40	120	-	-	0.09	1258.13	0.547	2376.01
	lavor50	150	-	-	0	673.48	0	3002.88

MDGP-specific methods

- Smoothing-based:
 - Continuation method (heur) [Moré, Wu '97]
 - Double VNS with smoothing (heur) [L. et al. '09]
 - DC optimization with smoothing (heur) [An et al. '03]
 - Hyperbolic smoothing (heur) [Xavier '08]
- Alternating projections algorithm (heur) [Glunt et al. 90]: iterative updating of a dissimilarity matrix
- Geometric build-up (exact/heur) [Dong, Wu '03 and '07]: triangulation
- GNOMAD (heur) [Williams et al. '01] iterative updating of atomic ordering minimizing error contribution
- Monotonic Basin Hopping (heur) [Grosso et al. '09] funnel-based population heuristic
- Self-organization heuristic (heur) [Xu et al. '03] pairwise atomic position modification heuristic
 - SDP-based formulation [Ye et al. '09]

Geometric build-up

[Dong, Wu '03], [Dong, Wu '07]

Given $U = \{1, 2, 3, 4\} \subseteq V$ and a partial embedding $x : U \to \mathbb{R}^3$

- **1.** Consider $v \in V \smallsetminus U$ s.t. $U \subseteq \delta(v)$
- 2. Extend x to v by solving a linear system:

$$\begin{aligned} \|x_{v} - x_{1}\|^{2} &= d_{1v}^{2} \\ \|x_{v} - x_{2}\|^{2} &= d_{2v}^{2} \\ \|x_{v} - x_{3}\|^{2} &= d_{3v}^{2} \\ \|x_{v} - x_{4}\|^{2} &= d_{3v}^{2} \end{aligned} \Rightarrow \begin{aligned} \|x_{v}\|^{2} - 2x_{v} \cdot x_{1} + \|x_{1}\|^{2} &= d_{1v}^{2} (5) \\ \|x_{v}\|^{2} - 2x_{v} \cdot x_{2} + \|x_{2}\|^{2} &= d_{1v}^{2} (6) \\ \|x_{v}\|^{2} - 2x_{v} \cdot x_{3} + \|x_{3}\|^{2} &= d_{1v}^{2} (7) \\ \|x_{v}\|^{2} - 2x_{v} \cdot x_{4} + \|x_{4}\|^{2} &= d_{1v}^{2} (7) \\ \|x_{v}\|^{2} - 2x_{v} \cdot x_{4} + \|x_{4}\|^{2} &= d_{1v}^{2} (8) \end{aligned}$$

3. Let $U \leftarrow U \cup \{v\}$; if U = V stop otherwise repeat from Step 1

Exact on complete and 3-trilateration graphs, heuristic otherwise